Properties

Label 2-8330-1.1-c1-0-102
Degree $2$
Conductor $8330$
Sign $-1$
Analytic cond. $66.5153$
Root an. cond. $8.15569$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 5-s + 6-s − 8-s − 2·9-s + 10-s − 12-s − 5·13-s + 15-s + 16-s + 17-s + 2·18-s + 19-s − 20-s + 6·23-s + 24-s + 25-s + 5·26-s + 5·27-s − 9·29-s − 30-s + 31-s − 32-s − 34-s − 2·36-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s − 0.353·8-s − 2/3·9-s + 0.316·10-s − 0.288·12-s − 1.38·13-s + 0.258·15-s + 1/4·16-s + 0.242·17-s + 0.471·18-s + 0.229·19-s − 0.223·20-s + 1.25·23-s + 0.204·24-s + 1/5·25-s + 0.980·26-s + 0.962·27-s − 1.67·29-s − 0.182·30-s + 0.179·31-s − 0.176·32-s − 0.171·34-s − 1/3·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8330\)    =    \(2 \cdot 5 \cdot 7^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(66.5153\)
Root analytic conductor: \(8.15569\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8330,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 \)
17 \( 1 - T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 5 T + p T^{2} \) 1.13.f
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.48393276005101874941263655864, −6.96411315091461743717426172373, −6.13973693669212759093846671075, −5.35103776353047269473020794511, −4.90472192242998809246951568760, −3.79932271291007241566819443830, −2.93175713381849537629202983492, −2.19513665356035202330167405959, −0.909724936546447536782092778555, 0, 0.909724936546447536782092778555, 2.19513665356035202330167405959, 2.93175713381849537629202983492, 3.79932271291007241566819443830, 4.90472192242998809246951568760, 5.35103776353047269473020794511, 6.13973693669212759093846671075, 6.96411315091461743717426172373, 7.48393276005101874941263655864

Graph of the $Z$-function along the critical line