Properties

Label 2-8190-1.1-c1-0-8
Degree $2$
Conductor $8190$
Sign $1$
Analytic cond. $65.3974$
Root an. cond. $8.08687$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s − 7-s − 8-s + 10-s + 4·11-s − 13-s + 14-s + 16-s − 6·19-s − 20-s − 4·22-s + 2·23-s + 25-s + 26-s − 28-s − 6·29-s − 8·31-s − 32-s + 35-s − 6·37-s + 6·38-s + 40-s + 8·41-s + 4·43-s + 4·44-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.377·7-s − 0.353·8-s + 0.316·10-s + 1.20·11-s − 0.277·13-s + 0.267·14-s + 1/4·16-s − 1.37·19-s − 0.223·20-s − 0.852·22-s + 0.417·23-s + 1/5·25-s + 0.196·26-s − 0.188·28-s − 1.11·29-s − 1.43·31-s − 0.176·32-s + 0.169·35-s − 0.986·37-s + 0.973·38-s + 0.158·40-s + 1.24·41-s + 0.609·43-s + 0.603·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8190 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8190 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8190\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(65.3974\)
Root analytic conductor: \(8.08687\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8190,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9606720710\)
\(L(\frac12)\) \(\approx\) \(0.9606720710\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 + T \)
13 \( 1 + T \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.66712251879193662854477734964, −7.30658446311593259469391752126, −6.51760597517957713283382859499, −6.00769507545392160783012673577, −5.05451277383289200014864382360, −4.00335072733598328521015264847, −3.63950900386493333419831036047, −2.48653125652622753566257427669, −1.68517807872807561215715208746, −0.53558312704812234777508614905, 0.53558312704812234777508614905, 1.68517807872807561215715208746, 2.48653125652622753566257427669, 3.63950900386493333419831036047, 4.00335072733598328521015264847, 5.05451277383289200014864382360, 6.00769507545392160783012673577, 6.51760597517957713283382859499, 7.30658446311593259469391752126, 7.66712251879193662854477734964

Graph of the $Z$-function along the critical line