Properties

Label 2-8190-1.1-c1-0-113
Degree $2$
Conductor $8190$
Sign $-1$
Analytic cond. $65.3974$
Root an. cond. $8.08687$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s + 7-s + 8-s − 10-s + 3·11-s + 13-s + 14-s + 16-s − 6·17-s + 2·19-s − 20-s + 3·22-s − 9·23-s + 25-s + 26-s + 28-s − 6·29-s + 5·31-s + 32-s − 6·34-s − 35-s − 7·37-s + 2·38-s − 40-s − 9·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.377·7-s + 0.353·8-s − 0.316·10-s + 0.904·11-s + 0.277·13-s + 0.267·14-s + 1/4·16-s − 1.45·17-s + 0.458·19-s − 0.223·20-s + 0.639·22-s − 1.87·23-s + 1/5·25-s + 0.196·26-s + 0.188·28-s − 1.11·29-s + 0.898·31-s + 0.176·32-s − 1.02·34-s − 0.169·35-s − 1.15·37-s + 0.324·38-s − 0.158·40-s − 1.40·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8190 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8190 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8190\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(65.3974\)
Root analytic conductor: \(8.08687\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8190,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 - T \)
13 \( 1 - T \)
good11 \( 1 - 3 T + p T^{2} \) 1.11.ad
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 - 17 T + p T^{2} \) 1.79.ar
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 19 T + p T^{2} \) 1.97.t
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.40763354077839180383777566032, −6.49706965430865153113993271148, −6.32078817545384183719404055896, −5.19051988984154532318023526779, −4.65309669947823058501964831138, −3.83257242655015074719387362363, −3.43058769171146650699367646612, −2.16633758076795978441090467118, −1.54930151612806125462070897382, 0, 1.54930151612806125462070897382, 2.16633758076795978441090467118, 3.43058769171146650699367646612, 3.83257242655015074719387362363, 4.65309669947823058501964831138, 5.19051988984154532318023526779, 6.32078817545384183719404055896, 6.49706965430865153113993271148, 7.40763354077839180383777566032

Graph of the $Z$-function along the critical line