Properties

Label 2-81144-1.1-c1-0-51
Degree $2$
Conductor $81144$
Sign $-1$
Analytic cond. $647.938$
Root an. cond. $25.4546$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 5·11-s + 4·13-s + 7·19-s − 23-s − 25-s + 4·31-s − 8·37-s − 5·41-s + 2·43-s − 47-s + 9·53-s − 10·55-s − 3·59-s − 3·61-s − 8·65-s + 2·67-s + 16·71-s − 4·73-s − 8·79-s − 14·83-s − 14·95-s − 6·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  − 0.894·5-s + 1.50·11-s + 1.10·13-s + 1.60·19-s − 0.208·23-s − 1/5·25-s + 0.718·31-s − 1.31·37-s − 0.780·41-s + 0.304·43-s − 0.145·47-s + 1.23·53-s − 1.34·55-s − 0.390·59-s − 0.384·61-s − 0.992·65-s + 0.244·67-s + 1.89·71-s − 0.468·73-s − 0.900·79-s − 1.53·83-s − 1.43·95-s − 0.609·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81144 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81144\)    =    \(2^{3} \cdot 3^{2} \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(647.938\)
Root analytic conductor: \(25.4546\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 81144,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
23 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 3 T + p T^{2} \) 1.61.d
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.06703180923458, −13.84593562044359, −13.41101828462611, −12.54981387854372, −12.11818432814019, −11.76917275024117, −11.30300372957727, −11.00494980680850, −10.03285522418159, −9.861026205131797, −9.058085350951003, −8.658945950409026, −8.256945301837162, −7.542172621170000, −7.111941466248710, −6.591522751079893, −6.000393043649657, −5.453571014140536, −4.732653153163818, −4.101608263001396, −3.542071534485773, −3.387097805615803, −2.364190483233812, −1.351870784305193, −1.096465685271448, 0, 1.096465685271448, 1.351870784305193, 2.364190483233812, 3.387097805615803, 3.542071534485773, 4.101608263001396, 4.732653153163818, 5.453571014140536, 6.000393043649657, 6.591522751079893, 7.111941466248710, 7.542172621170000, 8.256945301837162, 8.658945950409026, 9.058085350951003, 9.861026205131797, 10.03285522418159, 11.00494980680850, 11.30300372957727, 11.76917275024117, 12.11818432814019, 12.54981387854372, 13.41101828462611, 13.84593562044359, 14.06703180923458

Graph of the $Z$-function along the critical line