Properties

Label 2-81144-1.1-c1-0-17
Degree $2$
Conductor $81144$
Sign $1$
Analytic cond. $647.938$
Root an. cond. $25.4546$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 11-s + 6·13-s − 7·19-s − 23-s − 5·25-s + 10·29-s + 10·31-s + 6·37-s − 5·41-s + 4·43-s − 47-s + 3·53-s − 3·59-s − 9·61-s − 4·67-s + 12·71-s + 4·73-s − 2·79-s + 2·83-s + 18·89-s + 6·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 0.301·11-s + 1.66·13-s − 1.60·19-s − 0.208·23-s − 25-s + 1.85·29-s + 1.79·31-s + 0.986·37-s − 0.780·41-s + 0.609·43-s − 0.145·47-s + 0.412·53-s − 0.390·59-s − 1.15·61-s − 0.488·67-s + 1.42·71-s + 0.468·73-s − 0.225·79-s + 0.219·83-s + 1.90·89-s + 0.609·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81144 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81144\)    =    \(2^{3} \cdot 3^{2} \cdot 7^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(647.938\)
Root analytic conductor: \(25.4546\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 81144,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.615701793\)
\(L(\frac12)\) \(\approx\) \(2.615701793\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
23 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 7 T + p T^{2} \) 1.19.h
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 9 T + p T^{2} \) 1.61.j
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 - 18 T + p T^{2} \) 1.89.as
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.91983475751174, −13.45599515789090, −13.12938128908025, −12.50359085123237, −11.91765137904245, −11.59855903735060, −10.84667919255439, −10.54053614169373, −10.12019181477833, −9.453018311779362, −8.808744403040077, −8.310388512285302, −8.127745599505813, −7.423297777581056, −6.499085265240390, −6.253230959468373, −6.001642235152391, −4.971202582072243, −4.530250670366561, −3.971844293431557, −3.374363466915301, −2.635791834558364, −2.071017150098134, −1.220322085655292, −0.5683045844709219, 0.5683045844709219, 1.220322085655292, 2.071017150098134, 2.635791834558364, 3.374363466915301, 3.971844293431557, 4.530250670366561, 4.971202582072243, 6.001642235152391, 6.253230959468373, 6.499085265240390, 7.423297777581056, 8.127745599505813, 8.310388512285302, 8.808744403040077, 9.453018311779362, 10.12019181477833, 10.54053614169373, 10.84667919255439, 11.59855903735060, 11.91765137904245, 12.50359085123237, 13.12938128908025, 13.45599515789090, 13.91983475751174

Graph of the $Z$-function along the critical line