Properties

Label 2-81144-1.1-c1-0-15
Degree $2$
Conductor $81144$
Sign $1$
Analytic cond. $647.938$
Root an. cond. $25.4546$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s − 2·13-s − 4·17-s + 6·19-s − 23-s + 11·25-s − 10·29-s − 4·31-s − 2·37-s − 6·41-s − 6·43-s + 8·47-s − 8·53-s − 4·59-s + 2·61-s − 8·65-s + 6·67-s + 14·73-s − 10·79-s + 16·83-s − 16·85-s + 24·95-s + 18·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 1.78·5-s − 0.554·13-s − 0.970·17-s + 1.37·19-s − 0.208·23-s + 11/5·25-s − 1.85·29-s − 0.718·31-s − 0.328·37-s − 0.937·41-s − 0.914·43-s + 1.16·47-s − 1.09·53-s − 0.520·59-s + 0.256·61-s − 0.992·65-s + 0.733·67-s + 1.63·73-s − 1.12·79-s + 1.75·83-s − 1.73·85-s + 2.46·95-s + 1.82·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81144 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81144\)    =    \(2^{3} \cdot 3^{2} \cdot 7^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(647.938\)
Root analytic conductor: \(25.4546\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 81144,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.058098423\)
\(L(\frac12)\) \(\approx\) \(3.058098423\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
23 \( 1 + T \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 6 T + p T^{2} \) 1.67.ag
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.92856670112047, −13.51912048577018, −13.00750638743380, −12.76841690562347, −11.95917541585409, −11.51120640184099, −10.86922838595743, −10.44609273992618, −9.876520291205623, −9.416010245013478, −9.176271639201107, −8.624508602502173, −7.735854719413979, −7.342147116595284, −6.649796268647047, −6.294264493518924, −5.573579983449325, −5.217313166547116, −4.835811774394480, −3.842934788951523, −3.270020845582312, −2.515087863968390, −1.928480007102483, −1.588438700130540, −0.5353995667407298, 0.5353995667407298, 1.588438700130540, 1.928480007102483, 2.515087863968390, 3.270020845582312, 3.842934788951523, 4.835811774394480, 5.217313166547116, 5.573579983449325, 6.294264493518924, 6.649796268647047, 7.342147116595284, 7.735854719413979, 8.624508602502173, 9.176271639201107, 9.416010245013478, 9.876520291205623, 10.44609273992618, 10.86922838595743, 11.51120640184099, 11.95917541585409, 12.76841690562347, 13.00750638743380, 13.51912048577018, 13.92856670112047

Graph of the $Z$-function along the critical line