Properties

Label 2-80850-1.1-c1-0-137
Degree $2$
Conductor $80850$
Sign $-1$
Analytic cond. $645.590$
Root an. cond. $25.4084$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s + 8-s + 9-s − 11-s − 12-s + 5·13-s + 16-s − 3·17-s + 18-s − 6·19-s − 22-s − 3·23-s − 24-s + 5·26-s − 27-s − 5·29-s − 5·31-s + 32-s + 33-s − 3·34-s + 36-s + 8·37-s − 6·38-s − 5·39-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s + 0.353·8-s + 1/3·9-s − 0.301·11-s − 0.288·12-s + 1.38·13-s + 1/4·16-s − 0.727·17-s + 0.235·18-s − 1.37·19-s − 0.213·22-s − 0.625·23-s − 0.204·24-s + 0.980·26-s − 0.192·27-s − 0.928·29-s − 0.898·31-s + 0.176·32-s + 0.174·33-s − 0.514·34-s + 1/6·36-s + 1.31·37-s − 0.973·38-s − 0.800·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 80850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(80850\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(645.590\)
Root analytic conductor: \(25.4084\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 80850,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
good13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - 7 T + p T^{2} \) 1.43.ah
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 + T + p T^{2} \) 1.59.b
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.14847469999625, −13.66191422341753, −13.11981052702167, −12.76206931655983, −12.50732741824721, −11.63146165268758, −11.16513916921528, −10.98549123822700, −10.51973614178637, −9.770908530020177, −9.268080510821395, −8.583429529804740, −8.100913183280463, −7.577257118532164, −6.806149748262716, −6.363099531920118, −6.036983914794594, −5.428379808272727, −4.857641560642067, −4.125135197597811, −3.892391700110482, −3.173908582549039, −2.199077726471943, −1.890735224388391, −0.9141736522253180, 0, 0.9141736522253180, 1.890735224388391, 2.199077726471943, 3.173908582549039, 3.892391700110482, 4.125135197597811, 4.857641560642067, 5.428379808272727, 6.036983914794594, 6.363099531920118, 6.806149748262716, 7.577257118532164, 8.100913183280463, 8.583429529804740, 9.268080510821395, 9.770908530020177, 10.51973614178637, 10.98549123822700, 11.16513916921528, 11.63146165268758, 12.50732741824721, 12.76206931655983, 13.11981052702167, 13.66191422341753, 14.14847469999625

Graph of the $Z$-function along the critical line