Properties

Label 2-80850-1.1-c1-0-120
Degree $2$
Conductor $80850$
Sign $-1$
Analytic cond. $645.590$
Root an. cond. $25.4084$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 8-s + 9-s − 11-s − 12-s + 16-s + 17-s − 18-s + 8·19-s + 22-s + 4·23-s + 24-s − 27-s − 7·29-s + 2·31-s − 32-s + 33-s − 34-s + 36-s + 3·37-s − 8·38-s − 9·41-s − 43-s − 44-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.301·11-s − 0.288·12-s + 1/4·16-s + 0.242·17-s − 0.235·18-s + 1.83·19-s + 0.213·22-s + 0.834·23-s + 0.204·24-s − 0.192·27-s − 1.29·29-s + 0.359·31-s − 0.176·32-s + 0.174·33-s − 0.171·34-s + 1/6·36-s + 0.493·37-s − 1.29·38-s − 1.40·41-s − 0.152·43-s − 0.150·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 80850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(80850\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(645.590\)
Root analytic conductor: \(25.4084\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 80850,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
11 \( 1 + T \)
good13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - T + p T^{2} \) 1.17.ab
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 7 T + p T^{2} \) 1.29.h
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 11 T + p T^{2} \) 1.47.al
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 9 T + p T^{2} \) 1.79.aj
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.24389555093883, −13.54107444041086, −13.37421254419214, −12.57911058785141, −12.03224214361446, −11.81340272602589, −11.02245113310284, −10.92524545640458, −10.07785487145141, −9.873745966818560, −9.091406888078471, −8.950021523984097, −8.001895796310994, −7.571699836043136, −7.232814798429229, −6.639709304672446, −5.887434738678986, −5.551871058183517, −4.963377665128176, −4.344910446716267, −3.386434376801518, −3.098303509251759, −2.203660463509993, −1.424715910234113, −0.8762667233984382, 0, 0.8762667233984382, 1.424715910234113, 2.203660463509993, 3.098303509251759, 3.386434376801518, 4.344910446716267, 4.963377665128176, 5.551871058183517, 5.887434738678986, 6.639709304672446, 7.232814798429229, 7.571699836043136, 8.001895796310994, 8.950021523984097, 9.091406888078471, 9.873745966818560, 10.07785487145141, 10.92524545640458, 11.02245113310284, 11.81340272602589, 12.03224214361446, 12.57911058785141, 13.37421254419214, 13.54107444041086, 14.24389555093883

Graph of the $Z$-function along the critical line