Properties

Label 80850.j
Number of curves $1$
Conductor $80850$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("j1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 80850.j1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(7\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 - T + 17 T^{2}\) 1.17.ab
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 7 T + 29 T^{2}\) 1.29.h
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 80850.j do not have complex multiplication.

Modular form 80850.2.a.j

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} - q^{8} + q^{9} - q^{11} - q^{12} + q^{16} + q^{17} - q^{18} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 80850.j

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
80850.j1 80850ba1 \([1, 1, 0, 118800, 29548800]\) \(1050284375/2737152\) \(-483236057969280000\) \([]\) \(1260000\) \(2.0770\) \(\Gamma_0(N)\)-optimal