Properties

Label 2-80850-1.1-c1-0-118
Degree $2$
Conductor $80850$
Sign $-1$
Analytic cond. $645.590$
Root an. cond. $25.4084$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 8-s + 9-s + 11-s − 12-s + 2·13-s + 16-s − 4·17-s − 18-s − 22-s + 2·23-s + 24-s − 2·26-s − 27-s − 8·31-s − 32-s − 33-s + 4·34-s + 36-s + 12·37-s − 2·39-s + 2·41-s + 12·43-s + 44-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.353·8-s + 1/3·9-s + 0.301·11-s − 0.288·12-s + 0.554·13-s + 1/4·16-s − 0.970·17-s − 0.235·18-s − 0.213·22-s + 0.417·23-s + 0.204·24-s − 0.392·26-s − 0.192·27-s − 1.43·31-s − 0.176·32-s − 0.174·33-s + 0.685·34-s + 1/6·36-s + 1.97·37-s − 0.320·39-s + 0.312·41-s + 1.82·43-s + 0.150·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 80850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(80850\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(645.590\)
Root analytic conductor: \(25.4084\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 80850,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
good13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 12 T + p T^{2} \) 1.37.am
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.33186533155953, −13.64795096399465, −13.15476847129290, −12.59749694024002, −12.33169507356871, −11.38499962888793, −11.12893598878645, −11.04061035016777, −10.16179741257788, −9.776060200247150, −9.054584379580188, −8.895828559644641, −8.198852619056701, −7.520172189953412, −7.138871156046383, −6.598649451729536, −5.937103206445750, −5.680640982155973, −4.873125706159210, −4.092707308724514, −3.856646738074220, −2.747809765912766, −2.333861955090093, −1.414729067894990, −0.8736469948349985, 0, 0.8736469948349985, 1.414729067894990, 2.333861955090093, 2.747809765912766, 3.856646738074220, 4.092707308724514, 4.873125706159210, 5.680640982155973, 5.937103206445750, 6.598649451729536, 7.138871156046383, 7.520172189953412, 8.198852619056701, 8.895828559644641, 9.054584379580188, 9.776060200247150, 10.16179741257788, 11.04061035016777, 11.12893598878645, 11.38499962888793, 12.33169507356871, 12.59749694024002, 13.15476847129290, 13.64795096399465, 14.33186533155953

Graph of the $Z$-function along the critical line