Properties

Label 2-78144-1.1-c1-0-49
Degree $2$
Conductor $78144$
Sign $-1$
Analytic cond. $623.982$
Root an. cond. $24.9796$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4·7-s + 9-s − 11-s + 6·17-s + 2·19-s + 4·21-s + 2·23-s − 5·25-s − 27-s + 10·29-s + 4·31-s + 33-s − 37-s − 2·41-s − 6·43-s + 9·49-s − 6·51-s + 2·53-s − 2·57-s − 6·59-s + 4·61-s − 4·63-s − 4·67-s − 2·69-s − 12·71-s + 10·73-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.51·7-s + 1/3·9-s − 0.301·11-s + 1.45·17-s + 0.458·19-s + 0.872·21-s + 0.417·23-s − 25-s − 0.192·27-s + 1.85·29-s + 0.718·31-s + 0.174·33-s − 0.164·37-s − 0.312·41-s − 0.914·43-s + 9/7·49-s − 0.840·51-s + 0.274·53-s − 0.264·57-s − 0.781·59-s + 0.512·61-s − 0.503·63-s − 0.488·67-s − 0.240·69-s − 1.42·71-s + 1.17·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 78144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78144 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(78144\)    =    \(2^{6} \cdot 3 \cdot 11 \cdot 37\)
Sign: $-1$
Analytic conductor: \(623.982\)
Root analytic conductor: \(24.9796\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 78144,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 + T \)
37 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 8 T + p T^{2} \) 1.89.i
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.08437449606561, −13.67907244257509, −13.32248474414162, −12.64907875410484, −12.24977391084263, −11.93661889270885, −11.40298445764670, −10.59426224382423, −10.16473115116405, −9.874476831427260, −9.477791986746536, −8.686322620506987, −8.172925880350228, −7.512302836223229, −7.060287358351129, −6.360566836846717, −6.153972728403819, −5.443958525442948, −4.990365761587624, −4.254271263945834, −3.524928815986906, −3.088553342471130, −2.561945893716086, −1.464582951810937, −0.8010888941525402, 0, 0.8010888941525402, 1.464582951810937, 2.561945893716086, 3.088553342471130, 3.524928815986906, 4.254271263945834, 4.990365761587624, 5.443958525442948, 6.153972728403819, 6.360566836846717, 7.060287358351129, 7.512302836223229, 8.172925880350228, 8.686322620506987, 9.477791986746536, 9.874476831427260, 10.16473115116405, 10.59426224382423, 11.40298445764670, 11.93661889270885, 12.24977391084263, 12.64907875410484, 13.32248474414162, 13.67907244257509, 14.08437449606561

Graph of the $Z$-function along the critical line