Properties

Label 2-78144-1.1-c1-0-17
Degree $2$
Conductor $78144$
Sign $1$
Analytic cond. $623.982$
Root an. cond. $24.9796$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s − 4·7-s + 9-s + 11-s + 6·13-s + 2·15-s − 2·17-s + 4·19-s + 4·21-s + 4·23-s − 25-s − 27-s − 2·29-s − 8·31-s − 33-s + 8·35-s − 37-s − 6·39-s + 6·41-s + 4·43-s − 2·45-s + 8·47-s + 9·49-s + 2·51-s + 2·53-s − 2·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s − 1.51·7-s + 1/3·9-s + 0.301·11-s + 1.66·13-s + 0.516·15-s − 0.485·17-s + 0.917·19-s + 0.872·21-s + 0.834·23-s − 1/5·25-s − 0.192·27-s − 0.371·29-s − 1.43·31-s − 0.174·33-s + 1.35·35-s − 0.164·37-s − 0.960·39-s + 0.937·41-s + 0.609·43-s − 0.298·45-s + 1.16·47-s + 9/7·49-s + 0.280·51-s + 0.274·53-s − 0.269·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 78144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78144 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(78144\)    =    \(2^{6} \cdot 3 \cdot 11 \cdot 37\)
Sign: $1$
Analytic conductor: \(623.982\)
Root analytic conductor: \(24.9796\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 78144,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.367333975\)
\(L(\frac12)\) \(\approx\) \(1.367333975\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 - T \)
37 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 8 T + p T^{2} \) 1.31.i
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.90395679908272, −13.42170578669694, −12.85583398939576, −12.66524024735478, −12.03883821577103, −11.41075752038295, −11.05936930774153, −10.78527266401177, −9.926209108308311, −9.523352902483125, −8.946508720745982, −8.612356350006179, −7.759545284606629, −7.248327493475333, −6.833687804431496, −6.286811486418506, −5.710270780735303, −5.375763907968522, −4.326992665047472, −3.854392624783888, −3.531649374223917, −2.919593505049284, −1.970650116962920, −0.9667913686112918, −0.5033710534316353, 0.5033710534316353, 0.9667913686112918, 1.970650116962920, 2.919593505049284, 3.531649374223917, 3.854392624783888, 4.326992665047472, 5.375763907968522, 5.710270780735303, 6.286811486418506, 6.833687804431496, 7.248327493475333, 7.759545284606629, 8.612356350006179, 8.946508720745982, 9.523352902483125, 9.926209108308311, 10.78527266401177, 11.05936930774153, 11.41075752038295, 12.03883821577103, 12.66524024735478, 12.85583398939576, 13.42170578669694, 13.90395679908272

Graph of the $Z$-function along the critical line