Properties

Label 2-74360-1.1-c1-0-12
Degree $2$
Conductor $74360$
Sign $1$
Analytic cond. $593.767$
Root an. cond. $24.3673$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 5-s + 2·7-s + 9-s − 11-s + 2·15-s + 3·17-s + 5·19-s + 4·21-s + 2·23-s + 25-s − 4·27-s + 2·29-s − 6·31-s − 2·33-s + 2·35-s + 3·37-s + 9·41-s + 9·43-s + 45-s + 3·47-s − 3·49-s + 6·51-s − 4·53-s − 55-s + 10·57-s + 8·59-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.447·5-s + 0.755·7-s + 1/3·9-s − 0.301·11-s + 0.516·15-s + 0.727·17-s + 1.14·19-s + 0.872·21-s + 0.417·23-s + 1/5·25-s − 0.769·27-s + 0.371·29-s − 1.07·31-s − 0.348·33-s + 0.338·35-s + 0.493·37-s + 1.40·41-s + 1.37·43-s + 0.149·45-s + 0.437·47-s − 3/7·49-s + 0.840·51-s − 0.549·53-s − 0.134·55-s + 1.32·57-s + 1.04·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 74360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(74360\)    =    \(2^{3} \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(593.767\)
Root analytic conductor: \(24.3673\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 74360,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.740493588\)
\(L(\frac12)\) \(\approx\) \(5.740493588\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
11 \( 1 + T \)
13 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 - 9 T + p T^{2} \) 1.43.aj
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 18 T + p T^{2} \) 1.83.as
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 - 9 T + p T^{2} \) 1.97.aj
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.18792794591671, −13.73954543618640, −13.10154613773998, −12.79737577333527, −12.13272580879440, −11.48211370910336, −11.11562696929570, −10.51513291554763, −9.896912543995795, −9.376268553983181, −9.099701834655725, −8.461148970540624, −7.887571267872015, −7.600854572833417, −7.112293349827037, −6.245734121781924, −5.569764476536822, −5.275102315248174, −4.538749471844630, −3.804216752429559, −3.319364444620058, −2.583209102451611, −2.251171938121280, −1.388962625546228, −0.7678809535512294, 0.7678809535512294, 1.388962625546228, 2.251171938121280, 2.583209102451611, 3.319364444620058, 3.804216752429559, 4.538749471844630, 5.275102315248174, 5.569764476536822, 6.245734121781924, 7.112293349827037, 7.600854572833417, 7.887571267872015, 8.461148970540624, 9.099701834655725, 9.376268553983181, 9.896912543995795, 10.51513291554763, 11.11562696929570, 11.48211370910336, 12.13272580879440, 12.79737577333527, 13.10154613773998, 13.73954543618640, 14.18792794591671

Graph of the $Z$-function along the critical line