Properties

Label 2-72828-1.1-c1-0-28
Degree $2$
Conductor $72828$
Sign $-1$
Analytic cond. $581.534$
Root an. cond. $24.1150$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 7-s + 4·13-s + 6·19-s − 23-s − 25-s − 7·29-s − 6·31-s − 2·35-s − 37-s + 4·41-s + 43-s − 4·47-s + 49-s − 3·53-s − 2·59-s − 10·61-s + 8·65-s − 4·67-s + 71-s + 8·73-s + 9·79-s − 16·89-s − 4·91-s + 12·95-s + 6·97-s + 101-s + ⋯
L(s)  = 1  + 0.894·5-s − 0.377·7-s + 1.10·13-s + 1.37·19-s − 0.208·23-s − 1/5·25-s − 1.29·29-s − 1.07·31-s − 0.338·35-s − 0.164·37-s + 0.624·41-s + 0.152·43-s − 0.583·47-s + 1/7·49-s − 0.412·53-s − 0.260·59-s − 1.28·61-s + 0.992·65-s − 0.488·67-s + 0.118·71-s + 0.936·73-s + 1.01·79-s − 1.69·89-s − 0.419·91-s + 1.23·95-s + 0.609·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 72828 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72828 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(72828\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(581.534\)
Root analytic conductor: \(24.1150\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 72828,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
17 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 + 7 T + p T^{2} \) 1.29.h
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 - 9 T + p T^{2} \) 1.79.aj
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 16 T + p T^{2} \) 1.89.q
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.14490944660098, −13.81642707925681, −13.44458916839924, −12.89514521788092, −12.50183009495440, −11.82278320694662, −11.20608422376669, −10.94217152610384, −10.25853551370692, −9.684186836390033, −9.354451721900464, −8.951617891793972, −8.241025060205446, −7.564597061082342, −7.250461930644828, −6.381121320594208, −6.032748880309532, −5.554406558309671, −5.064048125410311, −4.209070253852885, −3.525756718241672, −3.198806480302114, −2.265583718416501, −1.681713675397061, −1.061566477890500, 0, 1.061566477890500, 1.681713675397061, 2.265583718416501, 3.198806480302114, 3.525756718241672, 4.209070253852885, 5.064048125410311, 5.554406558309671, 6.032748880309532, 6.381121320594208, 7.250461930644828, 7.564597061082342, 8.241025060205446, 8.951617891793972, 9.354451721900464, 9.684186836390033, 10.25853551370692, 10.94217152610384, 11.20608422376669, 11.82278320694662, 12.50183009495440, 12.89514521788092, 13.44458916839924, 13.81642707925681, 14.14490944660098

Graph of the $Z$-function along the critical line