Properties

Label 2-72828-1.1-c1-0-27
Degree $2$
Conductor $72828$
Sign $-1$
Analytic cond. $581.534$
Root an. cond. $24.1150$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 7-s + 4·13-s + 6·19-s + 23-s − 25-s + 7·29-s + 6·31-s − 2·35-s + 37-s − 4·41-s + 43-s − 4·47-s + 49-s − 3·53-s − 2·59-s + 10·61-s − 8·65-s − 4·67-s − 71-s − 8·73-s − 9·79-s − 16·89-s + 4·91-s − 12·95-s − 6·97-s + 101-s + ⋯
L(s)  = 1  − 0.894·5-s + 0.377·7-s + 1.10·13-s + 1.37·19-s + 0.208·23-s − 1/5·25-s + 1.29·29-s + 1.07·31-s − 0.338·35-s + 0.164·37-s − 0.624·41-s + 0.152·43-s − 0.583·47-s + 1/7·49-s − 0.412·53-s − 0.260·59-s + 1.28·61-s − 0.992·65-s − 0.488·67-s − 0.118·71-s − 0.936·73-s − 1.01·79-s − 1.69·89-s + 0.419·91-s − 1.23·95-s − 0.609·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 72828 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72828 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(72828\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(581.534\)
Root analytic conductor: \(24.1150\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 72828,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
17 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 - 7 T + p T^{2} \) 1.29.ah
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + T + p T^{2} \) 1.71.b
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 + 9 T + p T^{2} \) 1.79.j
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 16 T + p T^{2} \) 1.89.q
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.13261652790415, −14.02590657044239, −13.34261947453373, −12.91414811664803, −12.17619606784824, −11.74603688098139, −11.46310330254535, −11.01356432291312, −10.20412092500832, −9.999391068689486, −9.183392498931113, −8.605299364094468, −8.241867952304061, −7.751120009580467, −7.231434401646258, −6.595387268238310, −6.085568172979253, −5.390886260567262, −4.834342695838506, −4.249807249482191, −3.693710965612347, −3.106034364616714, −2.544343902471363, −1.387326048502981, −1.060764691867123, 0, 1.060764691867123, 1.387326048502981, 2.544343902471363, 3.106034364616714, 3.693710965612347, 4.249807249482191, 4.834342695838506, 5.390886260567262, 6.085568172979253, 6.595387268238310, 7.231434401646258, 7.751120009580467, 8.241867952304061, 8.605299364094468, 9.183392498931113, 9.999391068689486, 10.20412092500832, 11.01356432291312, 11.46310330254535, 11.74603688098139, 12.17619606784824, 12.91414811664803, 13.34261947453373, 14.02590657044239, 14.13261652790415

Graph of the $Z$-function along the critical line