Properties

Label 2-72828-1.1-c1-0-19
Degree $2$
Conductor $72828$
Sign $-1$
Analytic cond. $581.534$
Root an. cond. $24.1150$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s − 4·11-s + 6·13-s − 6·19-s + 23-s − 5·25-s + 3·29-s + 3·37-s + 6·41-s − 7·43-s − 12·47-s + 49-s + 3·53-s + 10·59-s + 2·61-s − 4·67-s + 3·71-s − 8·73-s + 4·77-s − 7·79-s + 6·83-s + 10·89-s − 6·91-s − 8·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  − 0.377·7-s − 1.20·11-s + 1.66·13-s − 1.37·19-s + 0.208·23-s − 25-s + 0.557·29-s + 0.493·37-s + 0.937·41-s − 1.06·43-s − 1.75·47-s + 1/7·49-s + 0.412·53-s + 1.30·59-s + 0.256·61-s − 0.488·67-s + 0.356·71-s − 0.936·73-s + 0.455·77-s − 0.787·79-s + 0.658·83-s + 1.05·89-s − 0.628·91-s − 0.812·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 72828 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72828 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(72828\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(581.534\)
Root analytic conductor: \(24.1150\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 72828,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
17 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 + 7 T + p T^{2} \) 1.79.h
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.36804081552139, −13.63661414795477, −13.27931689315272, −12.98805329083979, −12.55789195952370, −11.66239380697106, −11.40404365240738, −10.75522082948220, −10.36858693218368, −9.931831518457149, −9.260476340901755, −8.610808276932243, −8.261655169890581, −7.868011752513095, −7.058261052805514, −6.528004444561880, −5.992194460284102, −5.639296049447587, −4.811084147611218, −4.292854199052400, −3.614274702407847, −3.119505494185419, −2.347006050564409, −1.768645167511064, −0.8339412781908774, 0, 0.8339412781908774, 1.768645167511064, 2.347006050564409, 3.119505494185419, 3.614274702407847, 4.292854199052400, 4.811084147611218, 5.639296049447587, 5.992194460284102, 6.528004444561880, 7.058261052805514, 7.868011752513095, 8.261655169890581, 8.610808276932243, 9.260476340901755, 9.931831518457149, 10.36858693218368, 10.75522082948220, 11.40404365240738, 11.66239380697106, 12.55789195952370, 12.98805329083979, 13.27931689315272, 13.63661414795477, 14.36804081552139

Graph of the $Z$-function along the critical line