Properties

Label 72828.n
Number of curves $1$
Conductor $72828$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("n1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 72828.n1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 72828.n do not have complex multiplication.

Modular form 72828.2.a.n

Copy content sage:E.q_eigenform(10)
 
\(q - q^{7} - 4 q^{11} + 6 q^{13} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 72828.n

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
72828.n1 72828j1 \([0, 0, 0, 1252815, -4712505383]\) \(9248000/413343\) \(-9719575820676946305648\) \([]\) \(3818880\) \(2.8988\) \(\Gamma_0(N)\)-optimal