Properties

Label 2-68450-1.1-c1-0-11
Degree $2$
Conductor $68450$
Sign $1$
Analytic cond. $546.576$
Root an. cond. $23.3789$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2·3-s + 4-s − 2·6-s − 8-s + 9-s + 4·11-s + 2·12-s + 2·13-s + 16-s − 8·17-s − 18-s + 5·19-s − 4·22-s − 23-s − 2·24-s − 2·26-s − 4·27-s − 10·29-s + 4·31-s − 32-s + 8·33-s + 8·34-s + 36-s − 5·38-s + 4·39-s + 7·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.15·3-s + 1/2·4-s − 0.816·6-s − 0.353·8-s + 1/3·9-s + 1.20·11-s + 0.577·12-s + 0.554·13-s + 1/4·16-s − 1.94·17-s − 0.235·18-s + 1.14·19-s − 0.852·22-s − 0.208·23-s − 0.408·24-s − 0.392·26-s − 0.769·27-s − 1.85·29-s + 0.718·31-s − 0.176·32-s + 1.39·33-s + 1.37·34-s + 1/6·36-s − 0.811·38-s + 0.640·39-s + 1.09·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 68450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 68450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(68450\)    =    \(2 \cdot 5^{2} \cdot 37^{2}\)
Sign: $1$
Analytic conductor: \(546.576\)
Root analytic conductor: \(23.3789\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 68450,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.814487644\)
\(L(\frac12)\) \(\approx\) \(2.814487644\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
37 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 8 T + p T^{2} \) 1.17.i
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
41 \( 1 - 7 T + p T^{2} \) 1.41.ah
43 \( 1 - 9 T + p T^{2} \) 1.43.aj
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 - 11 T + p T^{2} \) 1.59.al
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 14 T + p T^{2} \) 1.71.ao
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 - 11 T + p T^{2} \) 1.79.al
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.11763982331195, −13.79806099275460, −13.28480125572326, −12.75311712656066, −12.08350934549994, −11.46026503067765, −11.09895924468019, −10.77109541921374, −9.670147672233862, −9.488106643557917, −9.081016000717442, −8.686625001297551, −8.073754329439804, −7.617612495218471, −7.045598990129348, −6.486537424659413, −5.983195773810975, −5.269483966065654, −4.330465783325616, −3.822956804428704, −3.415239316507000, −2.463722764475810, −2.178996736043445, −1.381921253229553, −0.5929292731353445, 0.5929292731353445, 1.381921253229553, 2.178996736043445, 2.463722764475810, 3.415239316507000, 3.822956804428704, 4.330465783325616, 5.269483966065654, 5.983195773810975, 6.486537424659413, 7.045598990129348, 7.617612495218471, 8.073754329439804, 8.686625001297551, 9.081016000717442, 9.488106643557917, 9.670147672233862, 10.77109541921374, 11.09895924468019, 11.46026503067765, 12.08350934549994, 12.75311712656066, 13.28480125572326, 13.79806099275460, 14.11763982331195

Graph of the $Z$-function along the critical line