Properties

Label 2-684-1.1-c1-0-5
Degree $2$
Conductor $684$
Sign $-1$
Analytic cond. $5.46176$
Root an. cond. $2.33704$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 2·11-s + 2·13-s − 6·17-s − 19-s − 2·23-s − 25-s − 4·29-s − 8·31-s − 2·37-s + 8·41-s − 8·43-s − 2·47-s − 7·49-s + 4·53-s + 4·55-s + 2·61-s − 4·65-s + 12·67-s + 4·71-s + 6·73-s − 16·79-s − 6·83-s + 12·85-s + 2·95-s − 2·97-s + 10·101-s + ⋯
L(s)  = 1  − 0.894·5-s − 0.603·11-s + 0.554·13-s − 1.45·17-s − 0.229·19-s − 0.417·23-s − 1/5·25-s − 0.742·29-s − 1.43·31-s − 0.328·37-s + 1.24·41-s − 1.21·43-s − 0.291·47-s − 49-s + 0.549·53-s + 0.539·55-s + 0.256·61-s − 0.496·65-s + 1.46·67-s + 0.474·71-s + 0.702·73-s − 1.80·79-s − 0.658·83-s + 1.30·85-s + 0.205·95-s − 0.203·97-s + 0.995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 684 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 684 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(684\)    =    \(2^{2} \cdot 3^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(5.46176\)
Root analytic conductor: \(2.33704\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 684,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 6 T + p T^{2} \) 1.17.g
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.12195161937843202649005513173, −9.057006068524209439978003598025, −8.293866406473810377354005199200, −7.49672369325431092785641599212, −6.58468415485848449567440294355, −5.48044237465026571070978672561, −4.34892306129675184831014993846, −3.51808670484264273930118040379, −2.07210083625649444067550413290, 0, 2.07210083625649444067550413290, 3.51808670484264273930118040379, 4.34892306129675184831014993846, 5.48044237465026571070978672561, 6.58468415485848449567440294355, 7.49672369325431092785641599212, 8.293866406473810377354005199200, 9.057006068524209439978003598025, 10.12195161937843202649005513173

Graph of the $Z$-function along the critical line