Properties

Label 2-6825-1.1-c1-0-35
Degree $2$
Conductor $6825$
Sign $1$
Analytic cond. $54.4978$
Root an. cond. $7.38226$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s − 4-s + 6-s − 7-s − 3·8-s + 9-s − 6·11-s − 12-s + 13-s − 14-s − 16-s + 18-s + 2·19-s − 21-s − 6·22-s − 3·24-s + 26-s + 27-s + 28-s + 6·29-s − 2·31-s + 5·32-s − 6·33-s − 36-s − 8·37-s + 2·38-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s − 1/2·4-s + 0.408·6-s − 0.377·7-s − 1.06·8-s + 1/3·9-s − 1.80·11-s − 0.288·12-s + 0.277·13-s − 0.267·14-s − 1/4·16-s + 0.235·18-s + 0.458·19-s − 0.218·21-s − 1.27·22-s − 0.612·24-s + 0.196·26-s + 0.192·27-s + 0.188·28-s + 1.11·29-s − 0.359·31-s + 0.883·32-s − 1.04·33-s − 1/6·36-s − 1.31·37-s + 0.324·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6825 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6825\)    =    \(3 \cdot 5^{2} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(54.4978\)
Root analytic conductor: \(7.38226\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6825,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.032533507\)
\(L(\frac12)\) \(\approx\) \(2.032533507\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
5 \( 1 \)
7 \( 1 + T \)
13 \( 1 - T \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
11 \( 1 + 6 T + p T^{2} \) 1.11.g
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 14 T + p T^{2} \) 1.71.o
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.936309964584622452691307181640, −7.39192877625088412605451876968, −6.43352235144913402633276474579, −5.66051722429490033363236284528, −5.06860747191705000287079464944, −4.42675251957163083908355608365, −3.45934498595500345357030587654, −2.99911947823485710854032736465, −2.16233599751962324679151043584, −0.61329912827667362407871541867, 0.61329912827667362407871541867, 2.16233599751962324679151043584, 2.99911947823485710854032736465, 3.45934498595500345357030587654, 4.42675251957163083908355608365, 5.06860747191705000287079464944, 5.66051722429490033363236284528, 6.43352235144913402633276474579, 7.39192877625088412605451876968, 7.936309964584622452691307181640

Graph of the $Z$-function along the critical line