Properties

Label 2-6660-1.1-c1-0-46
Degree $2$
Conductor $6660$
Sign $-1$
Analytic cond. $53.1803$
Root an. cond. $7.29248$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 7-s + 3·11-s − 6·13-s − 2·23-s + 25-s + 6·29-s − 35-s − 37-s + 9·41-s − 10·43-s − 47-s − 6·49-s − 53-s − 3·55-s − 12·61-s + 6·65-s + 5·71-s + 3·73-s + 3·77-s + 16·79-s − 11·83-s − 6·91-s + 8·97-s + 101-s − 10·103-s − 20·107-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.377·7-s + 0.904·11-s − 1.66·13-s − 0.417·23-s + 1/5·25-s + 1.11·29-s − 0.169·35-s − 0.164·37-s + 1.40·41-s − 1.52·43-s − 0.145·47-s − 6/7·49-s − 0.137·53-s − 0.404·55-s − 1.53·61-s + 0.744·65-s + 0.593·71-s + 0.351·73-s + 0.341·77-s + 1.80·79-s − 1.20·83-s − 0.628·91-s + 0.812·97-s + 0.0995·101-s − 0.985·103-s − 1.93·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6660 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6660 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6660\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 37\)
Sign: $-1$
Analytic conductor: \(53.1803\)
Root analytic conductor: \(7.29248\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6660,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
37 \( 1 + T \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 - 5 T + p T^{2} \) 1.71.af
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + 11 T + p T^{2} \) 1.83.l
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.79638999644460481713320026732, −6.87430274668279320068239669505, −6.44738044605106477199714290862, −5.36200728272846905543618876830, −4.71505583812144967193498673721, −4.12479975688139803033309734468, −3.16162875287926518278369267338, −2.31757562612808024695711287089, −1.29315237816564448936786559182, 0, 1.29315237816564448936786559182, 2.31757562612808024695711287089, 3.16162875287926518278369267338, 4.12479975688139803033309734468, 4.71505583812144967193498673721, 5.36200728272846905543618876830, 6.44738044605106477199714290862, 6.87430274668279320068239669505, 7.79638999644460481713320026732

Graph of the $Z$-function along the critical line