Properties

Label 2-64800-1.1-c1-0-15
Degree $2$
Conductor $64800$
Sign $1$
Analytic cond. $517.430$
Root an. cond. $22.7471$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s + 4·11-s + 6·13-s + 2·17-s + 5·19-s − 6·23-s − 4·29-s + 4·31-s − 8·37-s + 7·41-s + 5·43-s + 10·47-s + 9·49-s + 2·53-s − 3·59-s − 4·61-s + 9·67-s − 12·71-s − 7·73-s − 16·77-s + 10·79-s − 7·83-s − 15·89-s − 24·91-s + 11·97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 1.51·7-s + 1.20·11-s + 1.66·13-s + 0.485·17-s + 1.14·19-s − 1.25·23-s − 0.742·29-s + 0.718·31-s − 1.31·37-s + 1.09·41-s + 0.762·43-s + 1.45·47-s + 9/7·49-s + 0.274·53-s − 0.390·59-s − 0.512·61-s + 1.09·67-s − 1.42·71-s − 0.819·73-s − 1.82·77-s + 1.12·79-s − 0.768·83-s − 1.58·89-s − 2.51·91-s + 1.11·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 64800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(64800\)    =    \(2^{5} \cdot 3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(517.430\)
Root analytic conductor: \(22.7471\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 64800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.524432235\)
\(L(\frac12)\) \(\approx\) \(2.524432235\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 7 T + p T^{2} \) 1.41.ah
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 - 9 T + p T^{2} \) 1.67.aj
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 7 T + p T^{2} \) 1.83.h
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 - 11 T + p T^{2} \) 1.97.al
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.08722314424834, −13.72055788108794, −13.34689943727465, −12.68450809885371, −12.08463130010570, −11.95996543640932, −11.15655386182686, −10.69237810673357, −10.06290112795315, −9.577291327508589, −9.201973767829266, −8.693162650287712, −8.110045083650147, −7.293259861731275, −6.982596323672254, −6.204377214112507, −5.912136087549736, −5.573434136793301, −4.342642694461636, −3.957590690202000, −3.389855423873257, −3.025927517550263, −1.995892626609413, −1.211957023056056, −0.5976172137726586, 0.5976172137726586, 1.211957023056056, 1.995892626609413, 3.025927517550263, 3.389855423873257, 3.957590690202000, 4.342642694461636, 5.573434136793301, 5.912136087549736, 6.204377214112507, 6.982596323672254, 7.293259861731275, 8.110045083650147, 8.693162650287712, 9.201973767829266, 9.577291327508589, 10.06290112795315, 10.69237810673357, 11.15655386182686, 11.95996543640932, 12.08463130010570, 12.68450809885371, 13.34689943727465, 13.72055788108794, 14.08722314424834

Graph of the $Z$-function along the critical line