Properties

Label 2-64320-1.1-c1-0-39
Degree $2$
Conductor $64320$
Sign $-1$
Analytic cond. $513.597$
Root an. cond. $22.6626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 9-s − 4·13-s − 15-s − 4·17-s − 4·19-s + 8·23-s + 25-s + 27-s + 2·29-s + 2·31-s − 6·37-s − 4·39-s + 6·41-s − 45-s + 12·47-s − 7·49-s − 4·51-s + 2·53-s − 4·57-s + 6·59-s − 14·61-s + 4·65-s + 67-s + 8·69-s + 14·71-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 1/3·9-s − 1.10·13-s − 0.258·15-s − 0.970·17-s − 0.917·19-s + 1.66·23-s + 1/5·25-s + 0.192·27-s + 0.371·29-s + 0.359·31-s − 0.986·37-s − 0.640·39-s + 0.937·41-s − 0.149·45-s + 1.75·47-s − 49-s − 0.560·51-s + 0.274·53-s − 0.529·57-s + 0.781·59-s − 1.79·61-s + 0.496·65-s + 0.122·67-s + 0.963·69-s + 1.66·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 64320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(64320\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 67\)
Sign: $-1$
Analytic conductor: \(513.597\)
Root analytic conductor: \(22.6626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 64320,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
67 \( 1 - T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 14 T + p T^{2} \) 1.61.o
71 \( 1 - 14 T + p T^{2} \) 1.71.ao
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.53367613364882, −13.99323513552379, −13.55347480906443, −12.85786060648700, −12.57335952003957, −12.11853344479276, −11.37513570930021, −10.93006310624990, −10.47932804384658, −9.887026498917881, −9.164695882844617, −8.938720277220635, −8.371149148332324, −7.735496464483770, −7.265827733517547, −6.749517068845185, −6.314055591376283, −5.306083312860302, −4.890886889087289, −4.275858914018354, −3.813702308453880, −2.868279145453808, −2.594274907437554, −1.836813382359690, −0.8957179675146910, 0, 0.8957179675146910, 1.836813382359690, 2.594274907437554, 2.868279145453808, 3.813702308453880, 4.275858914018354, 4.890886889087289, 5.306083312860302, 6.314055591376283, 6.749517068845185, 7.265827733517547, 7.735496464483770, 8.371149148332324, 8.938720277220635, 9.164695882844617, 9.887026498917881, 10.47932804384658, 10.93006310624990, 11.37513570930021, 12.11853344479276, 12.57335952003957, 12.85786060648700, 13.55347480906443, 13.99323513552379, 14.53367613364882

Graph of the $Z$-function along the critical line