| L(s)  = 1  |     − 3-s     − 5-s     + 7-s     + 9-s     + 3·11-s     − 13-s     + 15-s     − 3·17-s     − 6·19-s     − 21-s     − 23-s     + 25-s     − 27-s     + 8·29-s     + 4·31-s     − 3·33-s     − 35-s     + 5·37-s     + 39-s     − 5·41-s     + 6·43-s     − 45-s     − 8·47-s     − 6·49-s     + 3·51-s     + 9·53-s     − 3·55-s  + ⋯ | 
 
| L(s)  = 1  |     − 0.577·3-s     − 0.447·5-s     + 0.377·7-s     + 1/3·9-s     + 0.904·11-s     − 0.277·13-s     + 0.258·15-s     − 0.727·17-s     − 1.37·19-s     − 0.218·21-s     − 0.208·23-s     + 1/5·25-s     − 0.192·27-s     + 1.48·29-s     + 0.718·31-s     − 0.522·33-s     − 0.169·35-s     + 0.821·37-s     + 0.160·39-s     − 0.780·41-s     + 0.914·43-s     − 0.149·45-s     − 1.16·47-s     − 6/7·49-s     + 0.420·51-s     + 1.23·53-s     − 0.404·55-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 6240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(\approx\) | 
             \(1.348887234\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(\approx\) | 
      
       \(1.348887234\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 |  \( 1 \)  |    | 
 | 3 |  \( 1 + T \)  |    | 
 | 5 |  \( 1 + T \)  |    | 
 | 13 |  \( 1 + T \)  |    | 
| good | 7 |  \( 1 - T + p T^{2} \)  |  1.7.ab  | 
 | 11 |  \( 1 - 3 T + p T^{2} \)  |  1.11.ad  | 
 | 17 |  \( 1 + 3 T + p T^{2} \)  |  1.17.d  | 
 | 19 |  \( 1 + 6 T + p T^{2} \)  |  1.19.g  | 
 | 23 |  \( 1 + T + p T^{2} \)  |  1.23.b  | 
 | 29 |  \( 1 - 8 T + p T^{2} \)  |  1.29.ai  | 
 | 31 |  \( 1 - 4 T + p T^{2} \)  |  1.31.ae  | 
 | 37 |  \( 1 - 5 T + p T^{2} \)  |  1.37.af  | 
 | 41 |  \( 1 + 5 T + p T^{2} \)  |  1.41.f  | 
 | 43 |  \( 1 - 6 T + p T^{2} \)  |  1.43.ag  | 
 | 47 |  \( 1 + 8 T + p T^{2} \)  |  1.47.i  | 
 | 53 |  \( 1 - 9 T + p T^{2} \)  |  1.53.aj  | 
 | 59 |  \( 1 - 4 T + p T^{2} \)  |  1.59.ae  | 
 | 61 |  \( 1 + 11 T + p T^{2} \)  |  1.61.l  | 
 | 67 |  \( 1 - 16 T + p T^{2} \)  |  1.67.aq  | 
 | 71 |  \( 1 + 9 T + p T^{2} \)  |  1.71.j  | 
 | 73 |  \( 1 + 6 T + p T^{2} \)  |  1.73.g  | 
 | 79 |  \( 1 + 3 T + p T^{2} \)  |  1.79.d  | 
 | 83 |  \( 1 - 8 T + p T^{2} \)  |  1.83.ai  | 
 | 89 |  \( 1 - 13 T + p T^{2} \)  |  1.89.an  | 
 | 97 |  \( 1 - 7 T + p T^{2} \)  |  1.97.ah  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−8.147392979087412721172777571288, −7.23458504479582604575646854092, −6.47325104698522766506597591619, −6.20458800132620540339314942714, −4.98204046895154126305642654414, −4.48386660038448688215945832167, −3.87288093191979679201119230172, −2.71713837768019973587400504649, −1.74414017259913515534309893024, −0.63117973648377647551504246168, 
0.63117973648377647551504246168, 1.74414017259913515534309893024, 2.71713837768019973587400504649, 3.87288093191979679201119230172, 4.48386660038448688215945832167, 4.98204046895154126305642654414, 6.20458800132620540339314942714, 6.47325104698522766506597591619, 7.23458504479582604575646854092, 8.147392979087412721172777571288