Properties

Label 2-6080-1.1-c1-0-60
Degree $2$
Conductor $6080$
Sign $1$
Analytic cond. $48.5490$
Root an. cond. $6.96771$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 5-s + 4·7-s + 9-s − 4·11-s + 4·13-s − 2·15-s − 2·17-s + 19-s + 8·21-s + 25-s − 4·27-s − 2·29-s + 8·31-s − 8·33-s − 4·35-s − 4·37-s + 8·39-s + 6·41-s − 45-s + 12·47-s + 9·49-s − 4·51-s + 8·53-s + 4·55-s + 2·57-s − 2·61-s + ⋯
L(s)  = 1  + 1.15·3-s − 0.447·5-s + 1.51·7-s + 1/3·9-s − 1.20·11-s + 1.10·13-s − 0.516·15-s − 0.485·17-s + 0.229·19-s + 1.74·21-s + 1/5·25-s − 0.769·27-s − 0.371·29-s + 1.43·31-s − 1.39·33-s − 0.676·35-s − 0.657·37-s + 1.28·39-s + 0.937·41-s − 0.149·45-s + 1.75·47-s + 9/7·49-s − 0.560·51-s + 1.09·53-s + 0.539·55-s + 0.264·57-s − 0.256·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6080\)    =    \(2^{6} \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(48.5490\)
Root analytic conductor: \(6.96771\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6080,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.321842416\)
\(L(\frac12)\) \(\approx\) \(3.321842416\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
19 \( 1 - T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 2 T + p T^{2} \) 1.17.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 8 T + p T^{2} \) 1.53.ai
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.957897188736796047407716030057, −7.83204414349715077231995955353, −6.90838586097089125721138961188, −5.79088931298754069749598117310, −5.12692209148964588109531291237, −4.29593188524500848954459800401, −3.64891704934951363544948150911, −2.65543894686412903871416838458, −2.08558235281628555403017728095, −0.926641843009645575190439776976, 0.926641843009645575190439776976, 2.08558235281628555403017728095, 2.65543894686412903871416838458, 3.64891704934951363544948150911, 4.29593188524500848954459800401, 5.12692209148964588109531291237, 5.79088931298754069749598117310, 6.90838586097089125721138961188, 7.83204414349715077231995955353, 7.957897188736796047407716030057

Graph of the $Z$-function along the critical line