Properties

Label 2-572e2-1.1-c1-0-26
Degree $2$
Conductor $327184$
Sign $1$
Analytic cond. $2612.57$
Root an. cond. $51.1133$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 2·7-s − 3·9-s − 4·17-s − 3·19-s + 9·23-s − 25-s + 9·29-s + 4·31-s − 4·35-s − 6·37-s − 6·41-s + 11·43-s + 6·45-s − 3·47-s − 3·49-s + 14·53-s + 12·59-s + 2·61-s − 6·63-s + 2·67-s − 13·71-s − 10·73-s + 8·79-s + 9·81-s + 7·83-s + 8·85-s + ⋯
L(s)  = 1  − 0.894·5-s + 0.755·7-s − 9-s − 0.970·17-s − 0.688·19-s + 1.87·23-s − 1/5·25-s + 1.67·29-s + 0.718·31-s − 0.676·35-s − 0.986·37-s − 0.937·41-s + 1.67·43-s + 0.894·45-s − 0.437·47-s − 3/7·49-s + 1.92·53-s + 1.56·59-s + 0.256·61-s − 0.755·63-s + 0.244·67-s − 1.54·71-s − 1.17·73-s + 0.900·79-s + 81-s + 0.768·83-s + 0.867·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 327184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 327184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(327184\)    =    \(2^{4} \cdot 11^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(2612.57\)
Root analytic conductor: \(51.1133\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 327184,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.009575336\)
\(L(\frac12)\) \(\approx\) \(2.009575336\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
11 \( 1 \)
13 \( 1 \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 3 T + p T^{2} \) 1.19.d
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 11 T + p T^{2} \) 1.43.al
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 14 T + p T^{2} \) 1.53.ao
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 13 T + p T^{2} \) 1.71.n
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 7 T + p T^{2} \) 1.83.ah
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.53587588026727, −11.99107481001686, −11.57360833379216, −11.45728680456608, −10.75604438376466, −10.57248010552454, −9.994869466876843, −9.185307555141827, −8.733361202292963, −8.529051396927011, −8.163857532378593, −7.559508322670770, −6.955469636222379, −6.725592016323210, −6.080423456098427, −5.414294683736180, −5.045100169290938, −4.446676168785348, −4.180801083710884, −3.423893037652603, −2.890998653831359, −2.446631654670778, −1.791154883776012, −0.9147359481110744, −0.4536261517009635, 0.4536261517009635, 0.9147359481110744, 1.791154883776012, 2.446631654670778, 2.890998653831359, 3.423893037652603, 4.180801083710884, 4.446676168785348, 5.045100169290938, 5.414294683736180, 6.080423456098427, 6.725592016323210, 6.955469636222379, 7.559508322670770, 8.163857532378593, 8.529051396927011, 8.733361202292963, 9.185307555141827, 9.994869466876843, 10.57248010552454, 10.75604438376466, 11.45728680456608, 11.57360833379216, 11.99107481001686, 12.53587588026727

Graph of the $Z$-function along the critical line