Properties

Label 2-572e2-1.1-c1-0-24
Degree $2$
Conductor $327184$
Sign $1$
Analytic cond. $2612.57$
Root an. cond. $51.1133$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s + 7-s − 2·9-s + 2·15-s − 3·17-s − 7·19-s − 21-s − 23-s − 25-s + 5·27-s − 3·29-s + 8·31-s − 2·35-s + 37-s + 11·41-s + 11·43-s + 4·45-s + 12·47-s − 6·49-s + 3·51-s − 6·53-s + 7·57-s − 9·59-s + 9·61-s − 2·63-s − 3·67-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s + 0.377·7-s − 2/3·9-s + 0.516·15-s − 0.727·17-s − 1.60·19-s − 0.218·21-s − 0.208·23-s − 1/5·25-s + 0.962·27-s − 0.557·29-s + 1.43·31-s − 0.338·35-s + 0.164·37-s + 1.71·41-s + 1.67·43-s + 0.596·45-s + 1.75·47-s − 6/7·49-s + 0.420·51-s − 0.824·53-s + 0.927·57-s − 1.17·59-s + 1.15·61-s − 0.251·63-s − 0.366·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 327184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 327184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(327184\)    =    \(2^{4} \cdot 11^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(2612.57\)
Root analytic conductor: \(51.1133\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 327184,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.271362623\)
\(L(\frac12)\) \(\approx\) \(1.271362623\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
11 \( 1 \)
13 \( 1 \)
good3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - T + p T^{2} \) 1.7.ab
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 - 11 T + p T^{2} \) 1.41.al
43 \( 1 - 11 T + p T^{2} \) 1.43.al
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 - 9 T + p T^{2} \) 1.61.aj
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - T + p T^{2} \) 1.89.ab
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.60243431038631, −12.09164073652099, −11.62214877165660, −11.18934799402411, −10.99262600429282, −10.53163612103835, −9.992713809194947, −9.315446305338124, −8.799086874249761, −8.514055166982630, −8.031858428359690, −7.414531197965639, −7.248436276741408, −6.283151358726411, −6.078279969059948, −5.797031020313050, −4.832932052780567, −4.509037632948647, −4.209464428520225, −3.580787102870751, −2.834487499821873, −2.372814176224929, −1.811268437334258, −0.7767441143173918, −0.4218994175118649, 0.4218994175118649, 0.7767441143173918, 1.811268437334258, 2.372814176224929, 2.834487499821873, 3.580787102870751, 4.209464428520225, 4.509037632948647, 4.832932052780567, 5.797031020313050, 6.078279969059948, 6.283151358726411, 7.248436276741408, 7.414531197965639, 8.031858428359690, 8.514055166982630, 8.799086874249761, 9.315446305338124, 9.992713809194947, 10.53163612103835, 10.99262600429282, 11.18934799402411, 11.62214877165660, 12.09164073652099, 12.60243431038631

Graph of the $Z$-function along the critical line