| L(s)  = 1  |     − 3-s     − 2·5-s     + 7-s     − 2·9-s             + 2·15-s     − 3·17-s     − 7·19-s     − 21-s     − 23-s     − 25-s     + 5·27-s     − 3·29-s     + 8·31-s         − 2·35-s     + 37-s         + 11·41-s     + 11·43-s     + 4·45-s     + 12·47-s     − 6·49-s     + 3·51-s     − 6·53-s         + 7·57-s     − 9·59-s     + 9·61-s     − 2·63-s         − 3·67-s  + ⋯ | 
 
| L(s)  = 1  |     − 0.577·3-s     − 0.894·5-s     + 0.377·7-s     − 2/3·9-s             + 0.516·15-s     − 0.727·17-s     − 1.60·19-s     − 0.218·21-s     − 0.208·23-s     − 1/5·25-s     + 0.962·27-s     − 0.557·29-s     + 1.43·31-s         − 0.338·35-s     + 0.164·37-s         + 1.71·41-s     + 1.67·43-s     + 0.596·45-s     + 1.75·47-s     − 6/7·49-s     + 0.420·51-s     − 0.824·53-s         + 0.927·57-s     − 1.17·59-s     + 1.15·61-s     − 0.251·63-s         − 0.366·67-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 327184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 327184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(\approx\) | 
             \(1.271362623\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(\approx\) | 
      
       \(1.271362623\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 |  \( 1 \)  |    | 
 | 11 |  \( 1 \)  |    | 
 | 13 |  \( 1 \)  |    | 
| good | 3 |  \( 1 + T + p T^{2} \)  |  1.3.b  | 
 | 5 |  \( 1 + 2 T + p T^{2} \)  |  1.5.c  | 
 | 7 |  \( 1 - T + p T^{2} \)  |  1.7.ab  | 
 | 17 |  \( 1 + 3 T + p T^{2} \)  |  1.17.d  | 
 | 19 |  \( 1 + 7 T + p T^{2} \)  |  1.19.h  | 
 | 23 |  \( 1 + T + p T^{2} \)  |  1.23.b  | 
 | 29 |  \( 1 + 3 T + p T^{2} \)  |  1.29.d  | 
 | 31 |  \( 1 - 8 T + p T^{2} \)  |  1.31.ai  | 
 | 37 |  \( 1 - T + p T^{2} \)  |  1.37.ab  | 
 | 41 |  \( 1 - 11 T + p T^{2} \)  |  1.41.al  | 
 | 43 |  \( 1 - 11 T + p T^{2} \)  |  1.43.al  | 
 | 47 |  \( 1 - 12 T + p T^{2} \)  |  1.47.am  | 
 | 53 |  \( 1 + 6 T + p T^{2} \)  |  1.53.g  | 
 | 59 |  \( 1 + 9 T + p T^{2} \)  |  1.59.j  | 
 | 61 |  \( 1 - 9 T + p T^{2} \)  |  1.61.aj  | 
 | 67 |  \( 1 + 3 T + p T^{2} \)  |  1.67.d  | 
 | 71 |  \( 1 + 5 T + p T^{2} \)  |  1.71.f  | 
 | 73 |  \( 1 + 2 T + p T^{2} \)  |  1.73.c  | 
 | 79 |  \( 1 + 12 T + p T^{2} \)  |  1.79.m  | 
 | 83 |  \( 1 - 4 T + p T^{2} \)  |  1.83.ae  | 
 | 89 |  \( 1 - T + p T^{2} \)  |  1.89.ab  | 
 | 97 |  \( 1 - T + p T^{2} \)  |  1.97.ab  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−12.60243431038631, −12.09164073652099, −11.62214877165660, −11.18934799402411, −10.99262600429282, −10.53163612103835, −9.992713809194947, −9.315446305338124, −8.799086874249761, −8.514055166982630, −8.031858428359690, −7.414531197965639, −7.248436276741408, −6.283151358726411, −6.078279969059948, −5.797031020313050, −4.832932052780567, −4.509037632948647, −4.209464428520225, −3.580787102870751, −2.834487499821873, −2.372814176224929, −1.811268437334258, −0.7767441143173918, −0.4218994175118649, 
0.4218994175118649, 0.7767441143173918, 1.811268437334258, 2.372814176224929, 2.834487499821873, 3.580787102870751, 4.209464428520225, 4.509037632948647, 4.832932052780567, 5.797031020313050, 6.078279969059948, 6.283151358726411, 7.248436276741408, 7.414531197965639, 8.031858428359690, 8.514055166982630, 8.799086874249761, 9.315446305338124, 9.992713809194947, 10.53163612103835, 10.99262600429282, 11.18934799402411, 11.62214877165660, 12.09164073652099, 12.60243431038631