Properties

Label 2-5700-1.1-c1-0-9
Degree $2$
Conductor $5700$
Sign $1$
Analytic cond. $45.5147$
Root an. cond. $6.74646$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5·7-s + 9-s + 2·11-s − 2·13-s + 4·17-s − 19-s − 5·21-s − 2·23-s + 27-s + 9·29-s − 8·31-s + 2·33-s + 2·37-s − 2·39-s + 7·41-s − 12·43-s − 12·47-s + 18·49-s + 4·51-s + 9·53-s − 57-s + 15·59-s − 13·61-s − 5·63-s + 8·67-s − 2·69-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.88·7-s + 1/3·9-s + 0.603·11-s − 0.554·13-s + 0.970·17-s − 0.229·19-s − 1.09·21-s − 0.417·23-s + 0.192·27-s + 1.67·29-s − 1.43·31-s + 0.348·33-s + 0.328·37-s − 0.320·39-s + 1.09·41-s − 1.82·43-s − 1.75·47-s + 18/7·49-s + 0.560·51-s + 1.23·53-s − 0.132·57-s + 1.95·59-s − 1.66·61-s − 0.629·63-s + 0.977·67-s − 0.240·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5700\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(45.5147\)
Root analytic conductor: \(6.74646\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5700,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.730248043\)
\(L(\frac12)\) \(\approx\) \(1.730248043\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
19 \( 1 + T \)
good7 \( 1 + 5 T + p T^{2} \) 1.7.f
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 7 T + p T^{2} \) 1.41.ah
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 - 15 T + p T^{2} \) 1.59.ap
61 \( 1 + 13 T + p T^{2} \) 1.61.n
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 + T + p T^{2} \) 1.73.b
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.179054080484572184115837116638, −7.31791495484327663216122035836, −6.71102180781504964835397559992, −6.18069926162879974807742981379, −5.30536925208551409310299219643, −4.25718735462672512799554873907, −3.45684034972003434249021202865, −3.02646480247497283660231212183, −2.01776924708312378077896558175, −0.66008638117534687638613914589, 0.66008638117534687638613914589, 2.01776924708312378077896558175, 3.02646480247497283660231212183, 3.45684034972003434249021202865, 4.25718735462672512799554873907, 5.30536925208551409310299219643, 6.18069926162879974807742981379, 6.71102180781504964835397559992, 7.31791495484327663216122035836, 8.179054080484572184115837116638

Graph of the $Z$-function along the critical line