Properties

Label 2-558-1.1-c1-0-6
Degree $2$
Conductor $558$
Sign $1$
Analytic cond. $4.45565$
Root an. cond. $2.11084$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 5-s + 2·7-s + 8-s + 10-s − 3·11-s + 3·13-s + 2·14-s + 16-s − 17-s + 7·19-s + 20-s − 3·22-s − 4·25-s + 3·26-s + 2·28-s − 4·29-s + 31-s + 32-s − 34-s + 2·35-s − 10·37-s + 7·38-s + 40-s + 6·41-s + 6·43-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.755·7-s + 0.353·8-s + 0.316·10-s − 0.904·11-s + 0.832·13-s + 0.534·14-s + 1/4·16-s − 0.242·17-s + 1.60·19-s + 0.223·20-s − 0.639·22-s − 4/5·25-s + 0.588·26-s + 0.377·28-s − 0.742·29-s + 0.179·31-s + 0.176·32-s − 0.171·34-s + 0.338·35-s − 1.64·37-s + 1.13·38-s + 0.158·40-s + 0.937·41-s + 0.914·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 558 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 558 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(558\)    =    \(2 \cdot 3^{2} \cdot 31\)
Sign: $1$
Analytic conductor: \(4.45565\)
Root analytic conductor: \(2.11084\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 558,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.528123386\)
\(L(\frac12)\) \(\approx\) \(2.528123386\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
31 \( 1 - T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
17 \( 1 + T + p T^{2} \) 1.17.b
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 4 T + p T^{2} \) 1.29.e
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 5 T + p T^{2} \) 1.47.af
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 3 T + p T^{2} \) 1.61.ad
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 + 7 T + p T^{2} \) 1.71.h
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 + 17 T + p T^{2} \) 1.83.r
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.93419074885029781059475634406, −10.07194658168638091834826689578, −9.003607759174706982308896490394, −7.922585877134847101173520832879, −7.19025111083617417452286089024, −5.82982607301142649475740414520, −5.33284774940468326614545835445, −4.16084091864439744479801572486, −2.92707199379996070162725493955, −1.60884224963952238823179483589, 1.60884224963952238823179483589, 2.92707199379996070162725493955, 4.16084091864439744479801572486, 5.33284774940468326614545835445, 5.82982607301142649475740414520, 7.19025111083617417452286089024, 7.922585877134847101173520832879, 9.003607759174706982308896490394, 10.07194658168638091834826689578, 10.93419074885029781059475634406

Graph of the $Z$-function along the critical line