Properties

Label 2-558-1.1-c1-0-5
Degree $2$
Conductor $558$
Sign $1$
Analytic cond. $4.45565$
Root an. cond. $2.11084$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 5-s + 8-s + 10-s + 3·11-s − 13-s + 16-s + 3·17-s + 19-s + 20-s + 3·22-s + 2·23-s − 4·25-s − 26-s + 2·29-s − 31-s + 32-s + 3·34-s − 2·37-s + 38-s + 40-s − 4·43-s + 3·44-s + 2·46-s + 7·47-s − 7·49-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.353·8-s + 0.316·10-s + 0.904·11-s − 0.277·13-s + 1/4·16-s + 0.727·17-s + 0.229·19-s + 0.223·20-s + 0.639·22-s + 0.417·23-s − 4/5·25-s − 0.196·26-s + 0.371·29-s − 0.179·31-s + 0.176·32-s + 0.514·34-s − 0.328·37-s + 0.162·38-s + 0.158·40-s − 0.609·43-s + 0.452·44-s + 0.294·46-s + 1.02·47-s − 49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 558 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 558 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(558\)    =    \(2 \cdot 3^{2} \cdot 31\)
Sign: $1$
Analytic conductor: \(4.45565\)
Root analytic conductor: \(2.11084\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 558,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.474365643\)
\(L(\frac12)\) \(\approx\) \(2.474365643\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
31 \( 1 + T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 9 T + p T^{2} \) 1.61.j
67 \( 1 - 3 T + p T^{2} \) 1.67.ad
71 \( 1 + T + p T^{2} \) 1.71.b
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 - 5 T + p T^{2} \) 1.83.af
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.86854857465430386588017560187, −9.918870461951558273250274050648, −9.159763668299275927660127090801, −7.963435050983651815539533078446, −6.97642119982859474551829060741, −6.09225726329028835226509898006, −5.21225146363139569251885813175, −4.10239034138391675224069292349, −3.00366413757856607909855265823, −1.57085349073372643096848893609, 1.57085349073372643096848893609, 3.00366413757856607909855265823, 4.10239034138391675224069292349, 5.21225146363139569251885813175, 6.09225726329028835226509898006, 6.97642119982859474551829060741, 7.963435050983651815539533078446, 9.159763668299275927660127090801, 9.918870461951558273250274050648, 10.86854857465430386588017560187

Graph of the $Z$-function along the critical line