Properties

Label 2-55770-1.1-c1-0-50
Degree $2$
Conductor $55770$
Sign $-1$
Analytic cond. $445.325$
Root an. cond. $21.1027$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 5-s − 6-s − 5·7-s + 8-s + 9-s + 10-s − 11-s − 12-s − 5·14-s − 15-s + 16-s − 4·17-s + 18-s + 5·19-s + 20-s + 5·21-s − 22-s + 6·23-s − 24-s + 25-s − 27-s − 5·28-s + 2·29-s − 30-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s − 1.88·7-s + 0.353·8-s + 1/3·9-s + 0.316·10-s − 0.301·11-s − 0.288·12-s − 1.33·14-s − 0.258·15-s + 1/4·16-s − 0.970·17-s + 0.235·18-s + 1.14·19-s + 0.223·20-s + 1.09·21-s − 0.213·22-s + 1.25·23-s − 0.204·24-s + 1/5·25-s − 0.192·27-s − 0.944·28-s + 0.371·29-s − 0.182·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55770 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55770 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55770\)    =    \(2 \cdot 3 \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(445.325\)
Root analytic conductor: \(21.1027\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 55770,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 - T \)
11 \( 1 + T \)
13 \( 1 \)
good7 \( 1 + 5 T + p T^{2} \) 1.7.f
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + 9 T + p T^{2} \) 1.67.j
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 15 T + p T^{2} \) 1.79.ap
83 \( 1 - 11 T + p T^{2} \) 1.83.al
89 \( 1 - T + p T^{2} \) 1.89.ab
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.72222653583909, −13.78042683257993, −13.58994294952296, −13.11571750744722, −12.77930198411010, −12.07208188749433, −11.91546297257976, −10.88588160009421, −10.74601388262854, −10.09385223193053, −9.514674172568431, −9.178264090560683, −8.539350916180102, −7.513432757827069, −7.027545348349783, −6.670625372413728, −6.187704845029399, −5.524532763486534, −5.187249579869771, −4.469555926359485, −3.664048035964282, −3.191945441876394, −2.680623313526125, −1.847411561149116, −0.8732993190506238, 0, 0.8732993190506238, 1.847411561149116, 2.680623313526125, 3.191945441876394, 3.664048035964282, 4.469555926359485, 5.187249579869771, 5.524532763486534, 6.187704845029399, 6.670625372413728, 7.027545348349783, 7.513432757827069, 8.539350916180102, 9.178264090560683, 9.514674172568431, 10.09385223193053, 10.74601388262854, 10.88588160009421, 11.91546297257976, 12.07208188749433, 12.77930198411010, 13.11571750744722, 13.58994294952296, 13.78042683257993, 14.72222653583909

Graph of the $Z$-function along the critical line