Properties

Label 2-55770-1.1-c1-0-25
Degree $2$
Conductor $55770$
Sign $1$
Analytic cond. $445.325$
Root an. cond. $21.1027$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 5-s + 6-s + 7-s + 8-s + 9-s − 10-s + 11-s + 12-s + 14-s − 15-s + 16-s + 18-s − 5·19-s − 20-s + 21-s + 22-s + 6·23-s + 24-s + 25-s + 27-s + 28-s + 6·29-s − 30-s + 7·31-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.301·11-s + 0.288·12-s + 0.267·14-s − 0.258·15-s + 1/4·16-s + 0.235·18-s − 1.14·19-s − 0.223·20-s + 0.218·21-s + 0.213·22-s + 1.25·23-s + 0.204·24-s + 1/5·25-s + 0.192·27-s + 0.188·28-s + 1.11·29-s − 0.182·30-s + 1.25·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55770 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55770 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55770\)    =    \(2 \cdot 3 \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(445.325\)
Root analytic conductor: \(21.1027\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 55770,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.244901874\)
\(L(\frac12)\) \(\approx\) \(5.244901874\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 + T \)
11 \( 1 - T \)
13 \( 1 \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 5 T + p T^{2} \) 1.79.af
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.40536429322352, −13.98962094595147, −13.41557075376643, −12.85628418004389, −12.48266012850328, −11.98105598805238, −11.24283313201936, −11.07104479178422, −10.32136710184857, −9.853453855511433, −9.110802699790899, −8.570360501885955, −8.119264751422032, −7.677573898008368, −6.777239328926633, −6.642561681305827, −5.944528678243926, −4.973509490307400, −4.680995106995617, −4.198897031170433, −3.327268630138377, −3.029828104121119, −2.211941727309778, −1.533779871719101, −0.6835201300615938, 0.6835201300615938, 1.533779871719101, 2.211941727309778, 3.029828104121119, 3.327268630138377, 4.198897031170433, 4.680995106995617, 4.973509490307400, 5.944528678243926, 6.642561681305827, 6.777239328926633, 7.677573898008368, 8.119264751422032, 8.570360501885955, 9.110802699790899, 9.853453855511433, 10.32136710184857, 11.07104479178422, 11.24283313201936, 11.98105598805238, 12.48266012850328, 12.85628418004389, 13.41557075376643, 13.98962094595147, 14.40536429322352

Graph of the $Z$-function along the critical line