Properties

Label 2-55770-1.1-c1-0-11
Degree $2$
Conductor $55770$
Sign $1$
Analytic cond. $445.325$
Root an. cond. $21.1027$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 5-s − 6-s + 2·7-s − 8-s + 9-s + 10-s − 11-s + 12-s − 2·14-s − 15-s + 16-s + 6·17-s − 18-s − 7·19-s − 20-s + 2·21-s + 22-s − 3·23-s − 24-s + 25-s + 27-s + 2·28-s − 3·29-s + 30-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s + 0.755·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s − 0.301·11-s + 0.288·12-s − 0.534·14-s − 0.258·15-s + 1/4·16-s + 1.45·17-s − 0.235·18-s − 1.60·19-s − 0.223·20-s + 0.436·21-s + 0.213·22-s − 0.625·23-s − 0.204·24-s + 1/5·25-s + 0.192·27-s + 0.377·28-s − 0.557·29-s + 0.182·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55770 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55770 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55770\)    =    \(2 \cdot 3 \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(445.325\)
Root analytic conductor: \(21.1027\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 55770,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.894826098\)
\(L(\frac12)\) \(\approx\) \(1.894826098\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 + T \)
11 \( 1 + T \)
13 \( 1 \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 - 17 T + p T^{2} \) 1.97.ar
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.38140118952821, −14.17419792977363, −13.36136859441189, −12.76376927379553, −12.36032663883469, −11.75995845523663, −11.30415899827208, −10.69586485630702, −10.27115881058434, −9.731996522759959, −9.239195613642451, −8.387208266466651, −8.200986138089472, −7.881135374778110, −7.248469222474886, −6.571558599552428, −6.032927382580487, −5.276611542442371, −4.630071815167555, −4.020741231370263, −3.387166948293655, −2.660669960005948, −2.040119127936811, −1.370309951760724, −0.5277634725413924, 0.5277634725413924, 1.370309951760724, 2.040119127936811, 2.660669960005948, 3.387166948293655, 4.020741231370263, 4.630071815167555, 5.276611542442371, 6.032927382580487, 6.571558599552428, 7.248469222474886, 7.881135374778110, 8.200986138089472, 8.387208266466651, 9.239195613642451, 9.731996522759959, 10.27115881058434, 10.69586485630702, 11.30415899827208, 11.75995845523663, 12.36032663883469, 12.76376927379553, 13.36136859441189, 14.17419792977363, 14.38140118952821

Graph of the $Z$-function along the critical line