Properties

Label 2-55506-1.1-c1-0-9
Degree $2$
Conductor $55506$
Sign $1$
Analytic cond. $443.217$
Root an. cond. $21.0527$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 3·5-s − 6-s − 3·7-s + 8-s + 9-s + 3·10-s − 11-s − 12-s + 13-s − 3·14-s − 3·15-s + 16-s + 6·17-s + 18-s − 5·19-s + 3·20-s + 3·21-s − 22-s + 4·23-s − 24-s + 4·25-s + 26-s − 27-s − 3·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s + 1.34·5-s − 0.408·6-s − 1.13·7-s + 0.353·8-s + 1/3·9-s + 0.948·10-s − 0.301·11-s − 0.288·12-s + 0.277·13-s − 0.801·14-s − 0.774·15-s + 1/4·16-s + 1.45·17-s + 0.235·18-s − 1.14·19-s + 0.670·20-s + 0.654·21-s − 0.213·22-s + 0.834·23-s − 0.204·24-s + 4/5·25-s + 0.196·26-s − 0.192·27-s − 0.566·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55506 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55506 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55506\)    =    \(2 \cdot 3 \cdot 11 \cdot 29^{2}\)
Sign: $1$
Analytic conductor: \(443.217\)
Root analytic conductor: \(21.0527\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 55506,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.440623981\)
\(L(\frac12)\) \(\approx\) \(3.440623981\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
11 \( 1 + T \)
29 \( 1 \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 + 3 T + p T^{2} \) 1.7.d
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 11 T + p T^{2} \) 1.53.al
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 15 T + p T^{2} \) 1.67.p
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 - T + p T^{2} \) 1.89.ab
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.50209772476959, −13.58427149145484, −13.27081439609698, −13.15171152087138, −12.38727509037505, −12.08643010572998, −11.42485266126976, −10.65158197635240, −10.32631104135653, −9.928709327268419, −9.478533946866005, −8.708695683325107, −8.198439226649304, −7.221811985437294, −6.788647553001321, −6.380069485993470, −5.806127152585097, −5.389025590167846, −4.984866243123900, −4.067295570890019, −3.403363304765425, −2.926800070653198, −2.107456787824475, −1.516068451209824, −0.5775312639581631, 0.5775312639581631, 1.516068451209824, 2.107456787824475, 2.926800070653198, 3.403363304765425, 4.067295570890019, 4.984866243123900, 5.389025590167846, 5.806127152585097, 6.380069485993470, 6.788647553001321, 7.221811985437294, 8.198439226649304, 8.708695683325107, 9.478533946866005, 9.928709327268419, 10.32631104135653, 10.65158197635240, 11.42485266126976, 12.08643010572998, 12.38727509037505, 13.15171152087138, 13.27081439609698, 13.58427149145484, 14.50209772476959

Graph of the $Z$-function along the critical line