Properties

Label 2-55506-1.1-c1-0-34
Degree $2$
Conductor $55506$
Sign $-1$
Analytic cond. $443.217$
Root an. cond. $21.0527$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 3·5-s − 6-s − 7-s + 8-s + 9-s + 3·10-s − 11-s − 12-s + 4·13-s − 14-s − 3·15-s + 16-s − 17-s + 18-s − 19-s + 3·20-s + 21-s − 22-s + 6·23-s − 24-s + 4·25-s + 4·26-s − 27-s − 28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s + 1.34·5-s − 0.408·6-s − 0.377·7-s + 0.353·8-s + 1/3·9-s + 0.948·10-s − 0.301·11-s − 0.288·12-s + 1.10·13-s − 0.267·14-s − 0.774·15-s + 1/4·16-s − 0.242·17-s + 0.235·18-s − 0.229·19-s + 0.670·20-s + 0.218·21-s − 0.213·22-s + 1.25·23-s − 0.204·24-s + 4/5·25-s + 0.784·26-s − 0.192·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55506 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55506 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55506\)    =    \(2 \cdot 3 \cdot 11 \cdot 29^{2}\)
Sign: $-1$
Analytic conductor: \(443.217\)
Root analytic conductor: \(21.0527\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 55506,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
11 \( 1 + T \)
29 \( 1 \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 + T + p T^{2} \) 1.7.b
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + T + p T^{2} \) 1.17.b
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 7 T + p T^{2} \) 1.59.ah
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.71985343247879, −13.94346793667545, −13.42311296145415, −13.25010800087794, −12.87480874843749, −12.17364666766488, −11.64521502094045, −11.03385457546806, −10.56704381308843, −10.26776687049862, −9.566382384639041, −9.011146945834751, −8.562122166294743, −7.729430076406980, −6.896056654955568, −6.661426069897055, −6.102100595072983, −5.541136614431643, −5.180366195257611, −4.605982309284551, −3.667811481350092, −3.274995015466419, −2.434912525422125, −1.726743042554050, −1.229944752159315, 0, 1.229944752159315, 1.726743042554050, 2.434912525422125, 3.274995015466419, 3.667811481350092, 4.605982309284551, 5.180366195257611, 5.541136614431643, 6.102100595072983, 6.661426069897055, 6.896056654955568, 7.729430076406980, 8.562122166294743, 9.011146945834751, 9.566382384639041, 10.26776687049862, 10.56704381308843, 11.03385457546806, 11.64521502094045, 12.17364666766488, 12.87480874843749, 13.25010800087794, 13.42311296145415, 13.94346793667545, 14.71985343247879

Graph of the $Z$-function along the critical line