Properties

Label 2-55506-1.1-c1-0-31
Degree $2$
Conductor $55506$
Sign $-1$
Analytic cond. $443.217$
Root an. cond. $21.0527$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 5-s + 6-s − 7-s + 8-s + 9-s + 10-s + 11-s + 12-s − 7·13-s − 14-s + 15-s + 16-s − 4·17-s + 18-s + 5·19-s + 20-s − 21-s + 22-s + 8·23-s + 24-s − 4·25-s − 7·26-s + 27-s − 28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.377·7-s + 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.301·11-s + 0.288·12-s − 1.94·13-s − 0.267·14-s + 0.258·15-s + 1/4·16-s − 0.970·17-s + 0.235·18-s + 1.14·19-s + 0.223·20-s − 0.218·21-s + 0.213·22-s + 1.66·23-s + 0.204·24-s − 4/5·25-s − 1.37·26-s + 0.192·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55506 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55506 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55506\)    =    \(2 \cdot 3 \cdot 11 \cdot 29^{2}\)
Sign: $-1$
Analytic conductor: \(443.217\)
Root analytic conductor: \(21.0527\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 55506,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
11 \( 1 - T \)
29 \( 1 \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 + T + p T^{2} \) 1.7.b
13 \( 1 + 7 T + p T^{2} \) 1.13.h
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 11 T + p T^{2} \) 1.37.l
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 - 15 T + p T^{2} \) 1.67.ap
71 \( 1 + 15 T + p T^{2} \) 1.71.p
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 3 T + p T^{2} \) 1.83.d
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.60684636702857, −14.01069066642384, −13.69893519850819, −13.29654612590845, −12.65603949846429, −12.23396945326298, −11.70648887851542, −11.29007755434487, −10.31269708190852, −10.11190454752898, −9.512667115929413, −9.070910820281223, −8.453805643182942, −7.695522627122733, −7.176187707127336, −6.782184388809361, −6.297184889549026, −5.349591992957694, −4.932430151853838, −4.613083771681361, −3.571788544955472, −3.203948179099852, −2.493882032361108, −2.041503920330730, −1.167631067447509, 0, 1.167631067447509, 2.041503920330730, 2.493882032361108, 3.203948179099852, 3.571788544955472, 4.613083771681361, 4.932430151853838, 5.349591992957694, 6.297184889549026, 6.782184388809361, 7.176187707127336, 7.695522627122733, 8.453805643182942, 9.070910820281223, 9.512667115929413, 10.11190454752898, 10.31269708190852, 11.29007755434487, 11.70648887851542, 12.23396945326298, 12.65603949846429, 13.29654612590845, 13.69893519850819, 14.01069066642384, 14.60684636702857

Graph of the $Z$-function along the critical line