Properties

Label 2-55506-1.1-c1-0-26
Degree $2$
Conductor $55506$
Sign $-1$
Analytic cond. $443.217$
Root an. cond. $21.0527$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 5-s + 6-s + 3·7-s − 8-s + 9-s − 10-s − 11-s − 12-s − 13-s − 3·14-s − 15-s + 16-s + 2·17-s − 18-s − 5·19-s + 20-s − 3·21-s + 22-s + 4·23-s + 24-s − 4·25-s + 26-s − 27-s + 3·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s + 1.13·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.301·11-s − 0.288·12-s − 0.277·13-s − 0.801·14-s − 0.258·15-s + 1/4·16-s + 0.485·17-s − 0.235·18-s − 1.14·19-s + 0.223·20-s − 0.654·21-s + 0.213·22-s + 0.834·23-s + 0.204·24-s − 4/5·25-s + 0.196·26-s − 0.192·27-s + 0.566·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55506 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55506 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55506\)    =    \(2 \cdot 3 \cdot 11 \cdot 29^{2}\)
Sign: $-1$
Analytic conductor: \(443.217\)
Root analytic conductor: \(21.0527\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 55506,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
11 \( 1 + T \)
29 \( 1 \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 7 T + p T^{2} \) 1.67.h
71 \( 1 + 13 T + p T^{2} \) 1.71.n
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 11 T + p T^{2} \) 1.83.l
89 \( 1 - 5 T + p T^{2} \) 1.89.af
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.79725685876617, −14.34073520695296, −13.49443684659782, −13.15049683954513, −12.55350174025299, −11.89326126630982, −11.48222127980436, −11.13147581076425, −10.46819890119450, −10.07679119041653, −9.666645621732103, −8.859188553041582, −8.455089844010181, −7.839938495334168, −7.484473004403165, −6.743510437648821, −6.187404099304898, −5.695108608649747, −5.046132104158643, −4.532150944851308, −3.921783447822493, −2.795805410784126, −2.352824108507533, −1.530736462466475, −1.009076119352324, 0, 1.009076119352324, 1.530736462466475, 2.352824108507533, 2.795805410784126, 3.921783447822493, 4.532150944851308, 5.046132104158643, 5.695108608649747, 6.187404099304898, 6.743510437648821, 7.484473004403165, 7.839938495334168, 8.455089844010181, 8.859188553041582, 9.666645621732103, 10.07679119041653, 10.46819890119450, 11.13147581076425, 11.48222127980436, 11.89326126630982, 12.55350174025299, 13.15049683954513, 13.49443684659782, 14.34073520695296, 14.79725685876617

Graph of the $Z$-function along the critical line