Properties

Label 2-552e2-1.1-c1-0-110
Degree $2$
Conductor $304704$
Sign $-1$
Analytic cond. $2433.07$
Root an. cond. $49.3261$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 2·7-s − 6·11-s + 13-s − 6·17-s + 4·19-s − 25-s + 9·29-s + 3·31-s + 4·35-s + 2·37-s + 41-s + 47-s − 3·49-s − 12·53-s − 12·55-s − 12·59-s − 8·61-s + 2·65-s + 10·67-s + 13·71-s + 5·73-s − 12·77-s − 4·79-s + 2·83-s − 12·85-s + 12·89-s + ⋯
L(s)  = 1  + 0.894·5-s + 0.755·7-s − 1.80·11-s + 0.277·13-s − 1.45·17-s + 0.917·19-s − 1/5·25-s + 1.67·29-s + 0.538·31-s + 0.676·35-s + 0.328·37-s + 0.156·41-s + 0.145·47-s − 3/7·49-s − 1.64·53-s − 1.61·55-s − 1.56·59-s − 1.02·61-s + 0.248·65-s + 1.22·67-s + 1.54·71-s + 0.585·73-s − 1.36·77-s − 0.450·79-s + 0.219·83-s − 1.30·85-s + 1.27·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 304704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 304704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(304704\)    =    \(2^{6} \cdot 3^{2} \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(2433.07\)
Root analytic conductor: \(49.3261\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 304704,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
23 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - T + p T^{2} \) 1.41.ab
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - T + p T^{2} \) 1.47.ab
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 - 13 T + p T^{2} \) 1.71.an
73 \( 1 - 5 T + p T^{2} \) 1.73.af
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.95115088686360, −12.51882997634043, −12.04829857308559, −11.35488602495244, −11.00178792209590, −10.71867945128114, −10.14090900270519, −9.737878631705030, −9.321987701395000, −8.690775083626858, −8.222760024043851, −7.879017967524473, −7.455468635249849, −6.749611523303359, −6.169834144344604, −6.004095268101984, −5.097715061237394, −4.909618669635492, −4.623234222397047, −3.736207932685826, −3.004679841213276, −2.587761648196288, −2.115910871979575, −1.541296997918610, −0.8153135470691976, 0, 0.8153135470691976, 1.541296997918610, 2.115910871979575, 2.587761648196288, 3.004679841213276, 3.736207932685826, 4.623234222397047, 4.909618669635492, 5.097715061237394, 6.004095268101984, 6.169834144344604, 6.749611523303359, 7.455468635249849, 7.879017967524473, 8.222760024043851, 8.690775083626858, 9.321987701395000, 9.737878631705030, 10.14090900270519, 10.71867945128114, 11.00178792209590, 11.35488602495244, 12.04829857308559, 12.51882997634043, 12.95115088686360

Graph of the $Z$-function along the critical line