Properties

Label 2-552e2-1.1-c1-0-105
Degree $2$
Conductor $304704$
Sign $-1$
Analytic cond. $2433.07$
Root an. cond. $49.3261$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 7-s + 6·11-s + 7·13-s − 2·17-s − 25-s + 10·29-s − 8·31-s + 2·35-s − 7·37-s + 9·43-s − 8·47-s − 6·49-s + 2·53-s − 12·55-s − 4·59-s − 7·61-s − 14·65-s + 3·67-s − 12·71-s − 14·73-s − 6·77-s + 8·79-s − 14·83-s + 4·85-s − 12·89-s − 7·91-s + ⋯
L(s)  = 1  − 0.894·5-s − 0.377·7-s + 1.80·11-s + 1.94·13-s − 0.485·17-s − 1/5·25-s + 1.85·29-s − 1.43·31-s + 0.338·35-s − 1.15·37-s + 1.37·43-s − 1.16·47-s − 6/7·49-s + 0.274·53-s − 1.61·55-s − 0.520·59-s − 0.896·61-s − 1.73·65-s + 0.366·67-s − 1.42·71-s − 1.63·73-s − 0.683·77-s + 0.900·79-s − 1.53·83-s + 0.433·85-s − 1.27·89-s − 0.733·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 304704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 304704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(304704\)    =    \(2^{6} \cdot 3^{2} \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(2433.07\)
Root analytic conductor: \(49.3261\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 304704,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
23 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 - 7 T + p T^{2} \) 1.13.ah
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 9 T + p T^{2} \) 1.43.aj
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 - 3 T + p T^{2} \) 1.67.ad
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.81138831162514, −12.38522170910151, −11.93743904700754, −11.49659369247931, −11.21038305674800, −10.69550885671684, −10.29686223517264, −9.509710971097910, −9.155261105451866, −8.779786901150932, −8.307929424121228, −7.979544548163905, −7.130343724075291, −6.817894353875104, −6.449996591997688, −5.888549410490726, −5.521484682156163, −4.442493257760395, −4.274434629078386, −3.852250033793036, −3.193495955316645, −3.016909640565466, −1.712374805697209, −1.528802404218628, −0.7914796659154026, 0, 0.7914796659154026, 1.528802404218628, 1.712374805697209, 3.016909640565466, 3.193495955316645, 3.852250033793036, 4.274434629078386, 4.442493257760395, 5.521484682156163, 5.888549410490726, 6.449996591997688, 6.817894353875104, 7.130343724075291, 7.979544548163905, 8.307929424121228, 8.779786901150932, 9.155261105451866, 9.509710971097910, 10.29686223517264, 10.69550885671684, 11.21038305674800, 11.49659369247931, 11.93743904700754, 12.38522170910151, 12.81138831162514

Graph of the $Z$-function along the critical line