Properties

Label 2-5461-1.1-c1-0-154
Degree $2$
Conductor $5461$
Sign $-1$
Analytic cond. $43.6063$
Root an. cond. $6.60350$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 3-s + 2·4-s − 5-s + 2·6-s − 7-s − 2·9-s + 2·10-s − 2·12-s − 6·13-s + 2·14-s + 15-s − 4·16-s + 3·17-s + 4·18-s − 2·20-s + 21-s − 4·23-s − 4·25-s + 12·26-s + 5·27-s − 2·28-s + 9·29-s − 2·30-s − 4·31-s + 8·32-s − 6·34-s + ⋯
L(s)  = 1  − 1.41·2-s − 0.577·3-s + 4-s − 0.447·5-s + 0.816·6-s − 0.377·7-s − 2/3·9-s + 0.632·10-s − 0.577·12-s − 1.66·13-s + 0.534·14-s + 0.258·15-s − 16-s + 0.727·17-s + 0.942·18-s − 0.447·20-s + 0.218·21-s − 0.834·23-s − 4/5·25-s + 2.35·26-s + 0.962·27-s − 0.377·28-s + 1.67·29-s − 0.365·30-s − 0.718·31-s + 1.41·32-s − 1.02·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5461 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5461 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5461\)    =    \(43 \cdot 127\)
Sign: $-1$
Analytic conductor: \(43.6063\)
Root analytic conductor: \(6.60350\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5461,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad43 \( 1 + T \)
127 \( 1 + T \)
good2 \( 1 + p T + p T^{2} \) 1.2.c
3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 5 T + p T^{2} \) 1.41.af
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 9 T + p T^{2} \) 1.89.j
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.939464462549859679095492427466, −7.34346291516924243052877992369, −6.57401016203390226750400979564, −5.82587680626435124666310564895, −4.95133374026906823148849244894, −4.18684007278661017971278522779, −2.94754357676235370066028536658, −2.19005501988872260932728427944, −0.817029472084123138038885878124, 0, 0.817029472084123138038885878124, 2.19005501988872260932728427944, 2.94754357676235370066028536658, 4.18684007278661017971278522779, 4.95133374026906823148849244894, 5.82587680626435124666310564895, 6.57401016203390226750400979564, 7.34346291516924243052877992369, 7.939464462549859679095492427466

Graph of the $Z$-function along the critical line