Properties

Label 2-54450-1.1-c1-0-111
Degree $2$
Conductor $54450$
Sign $-1$
Analytic cond. $434.785$
Root an. cond. $20.8515$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 3·7-s − 8-s − 5·13-s + 3·14-s + 16-s + 7·17-s + 7·19-s + 5·26-s − 3·28-s + 7·29-s + 6·31-s − 32-s − 7·34-s + 5·37-s − 7·38-s − 10·41-s + 6·43-s − 10·47-s + 2·49-s − 5·52-s − 12·53-s + 3·56-s − 7·58-s − 12·61-s − 6·62-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 1.13·7-s − 0.353·8-s − 1.38·13-s + 0.801·14-s + 1/4·16-s + 1.69·17-s + 1.60·19-s + 0.980·26-s − 0.566·28-s + 1.29·29-s + 1.07·31-s − 0.176·32-s − 1.20·34-s + 0.821·37-s − 1.13·38-s − 1.56·41-s + 0.914·43-s − 1.45·47-s + 2/7·49-s − 0.693·52-s − 1.64·53-s + 0.400·56-s − 0.919·58-s − 1.53·61-s − 0.762·62-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(54450\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(434.785\)
Root analytic conductor: \(20.8515\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 54450,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 \)
good7 \( 1 + 3 T + p T^{2} \) 1.7.d
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 - 7 T + p T^{2} \) 1.17.ah
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 7 T + p T^{2} \) 1.29.ah
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 5 T + p T^{2} \) 1.37.af
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 13 T + p T^{2} \) 1.83.n
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.65900538882675, −14.16838378223274, −13.79485349302176, −13.04652261671714, −12.43893127814967, −12.09260657640498, −11.79211488837848, −11.03450858329397, −10.27652160788296, −9.818190030796865, −9.721108581814175, −9.252976210493244, −8.264051557869130, −7.932082296150471, −7.411238132577607, −6.815148041807378, −6.350708399362489, −5.692219585048151, −5.068125642893111, −4.530205169029244, −3.378732982770904, −3.096371732289342, −2.629693131788038, −1.521039285585845, −0.8717915740795053, 0, 0.8717915740795053, 1.521039285585845, 2.629693131788038, 3.096371732289342, 3.378732982770904, 4.530205169029244, 5.068125642893111, 5.692219585048151, 6.350708399362489, 6.815148041807378, 7.411238132577607, 7.932082296150471, 8.264051557869130, 9.252976210493244, 9.721108581814175, 9.818190030796865, 10.27652160788296, 11.03450858329397, 11.79211488837848, 12.09260657640498, 12.43893127814967, 13.04652261671714, 13.79485349302176, 14.16838378223274, 14.65900538882675

Graph of the $Z$-function along the critical line