Properties

Label 2-54450-1.1-c1-0-103
Degree $2$
Conductor $54450$
Sign $1$
Analytic cond. $434.785$
Root an. cond. $20.8515$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 3·7-s + 8-s + 7·13-s + 3·14-s + 16-s + 3·17-s + 5·19-s + 8·23-s + 7·26-s + 3·28-s − 5·29-s − 8·31-s + 32-s + 3·34-s − 11·37-s + 5·38-s − 4·41-s − 6·43-s + 8·46-s + 4·47-s + 2·49-s + 7·52-s − 6·53-s + 3·56-s − 5·58-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 1.13·7-s + 0.353·8-s + 1.94·13-s + 0.801·14-s + 1/4·16-s + 0.727·17-s + 1.14·19-s + 1.66·23-s + 1.37·26-s + 0.566·28-s − 0.928·29-s − 1.43·31-s + 0.176·32-s + 0.514·34-s − 1.80·37-s + 0.811·38-s − 0.624·41-s − 0.914·43-s + 1.17·46-s + 0.583·47-s + 2/7·49-s + 0.970·52-s − 0.824·53-s + 0.400·56-s − 0.656·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(54450\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(434.785\)
Root analytic conductor: \(20.8515\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 54450,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.534000151\)
\(L(\frac12)\) \(\approx\) \(6.534000151\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 \)
good7 \( 1 - 3 T + p T^{2} \) 1.7.ad
13 \( 1 - 7 T + p T^{2} \) 1.13.ah
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 11 T + p T^{2} \) 1.37.l
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 6 T + p T^{2} \) 1.67.ag
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 - T + p T^{2} \) 1.83.ab
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.20636167011295, −14.05172157194100, −13.48370255715262, −12.85188565536214, −12.61717552488631, −11.66577194889130, −11.36399694046143, −11.10322832073730, −10.53059803749360, −9.866435274508734, −9.129572066935876, −8.605714705529447, −8.194633377886336, −7.509337006227618, −6.993224171838429, −6.513944802486596, −5.476371504788563, −5.412256502501600, −4.948957048495069, −3.855217873206684, −3.624025008109808, −3.068766327398207, −1.961987681203604, −1.476974211064255, −0.8530205590906021, 0.8530205590906021, 1.476974211064255, 1.961987681203604, 3.068766327398207, 3.624025008109808, 3.855217873206684, 4.948957048495069, 5.412256502501600, 5.476371504788563, 6.513944802486596, 6.993224171838429, 7.509337006227618, 8.194633377886336, 8.605714705529447, 9.129572066935876, 9.866435274508734, 10.53059803749360, 11.10322832073730, 11.36399694046143, 11.66577194889130, 12.61717552488631, 12.85188565536214, 13.48370255715262, 14.05172157194100, 14.20636167011295

Graph of the $Z$-function along the critical line