Properties

Label 2-52800-1.1-c1-0-121
Degree $2$
Conductor $52800$
Sign $1$
Analytic cond. $421.610$
Root an. cond. $20.5331$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5·7-s + 9-s + 11-s + 4·13-s + 5·17-s + 7·19-s + 5·21-s + 9·23-s + 27-s − 2·29-s − 4·31-s + 33-s − 7·37-s + 4·39-s − 7·41-s − 9·47-s + 18·49-s + 5·51-s + 2·53-s + 7·57-s − 7·59-s − 2·61-s + 5·63-s − 2·67-s + 9·69-s − 5·71-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.88·7-s + 1/3·9-s + 0.301·11-s + 1.10·13-s + 1.21·17-s + 1.60·19-s + 1.09·21-s + 1.87·23-s + 0.192·27-s − 0.371·29-s − 0.718·31-s + 0.174·33-s − 1.15·37-s + 0.640·39-s − 1.09·41-s − 1.31·47-s + 18/7·49-s + 0.700·51-s + 0.274·53-s + 0.927·57-s − 0.911·59-s − 0.256·61-s + 0.629·63-s − 0.244·67-s + 1.08·69-s − 0.593·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 52800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 52800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(52800\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(421.610\)
Root analytic conductor: \(20.5331\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 52800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.980255551\)
\(L(\frac12)\) \(\approx\) \(5.980255551\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
11 \( 1 - T \)
good7 \( 1 - 5 T + p T^{2} \) 1.7.af
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + 7 T + p T^{2} \) 1.41.h
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 7 T + p T^{2} \) 1.59.h
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 3 T + p T^{2} \) 1.79.ad
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.50685264974616, −13.90599692861572, −13.66613264606865, −13.09352363696306, −12.29503113934342, −11.84680573646005, −11.39827760077167, −10.86901821465192, −10.51322068827927, −9.667926508441001, −9.186710178427495, −8.627268598627359, −8.255484212390261, −7.599919757808605, −7.330639008805286, −6.634597252075718, −5.708439108571887, −5.145858402927666, −4.953537297333649, −4.024564545963085, −3.363582478626697, −3.032917726245742, −1.829676777187721, −1.437484995369717, −0.9367103889308592, 0.9367103889308592, 1.437484995369717, 1.829676777187721, 3.032917726245742, 3.363582478626697, 4.024564545963085, 4.953537297333649, 5.145858402927666, 5.708439108571887, 6.634597252075718, 7.330639008805286, 7.599919757808605, 8.255484212390261, 8.627268598627359, 9.186710178427495, 9.667926508441001, 10.51322068827927, 10.86901821465192, 11.39827760077167, 11.84680573646005, 12.29503113934342, 13.09352363696306, 13.66613264606865, 13.90599692861572, 14.50685264974616

Graph of the $Z$-function along the critical line