Properties

Label 2-52800-1.1-c1-0-10
Degree $2$
Conductor $52800$
Sign $1$
Analytic cond. $421.610$
Root an. cond. $20.5331$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·7-s + 9-s − 11-s − 4·17-s + 4·19-s − 2·21-s − 4·23-s + 27-s − 6·29-s − 33-s − 2·37-s + 2·41-s − 2·43-s − 12·47-s − 3·49-s − 4·51-s − 2·53-s + 4·57-s − 4·59-s − 2·61-s − 2·63-s − 4·69-s + 8·71-s + 2·77-s + 8·79-s + 81-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.755·7-s + 1/3·9-s − 0.301·11-s − 0.970·17-s + 0.917·19-s − 0.436·21-s − 0.834·23-s + 0.192·27-s − 1.11·29-s − 0.174·33-s − 0.328·37-s + 0.312·41-s − 0.304·43-s − 1.75·47-s − 3/7·49-s − 0.560·51-s − 0.274·53-s + 0.529·57-s − 0.520·59-s − 0.256·61-s − 0.251·63-s − 0.481·69-s + 0.949·71-s + 0.227·77-s + 0.900·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 52800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 52800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(52800\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(421.610\)
Root analytic conductor: \(20.5331\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 52800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.372518282\)
\(L(\frac12)\) \(\approx\) \(1.372518282\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
11 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.40807293786218, −13.91909140261372, −13.37290756536225, −13.09353479733853, −12.49096926632622, −12.02834988766317, −11.18592691280236, −11.05658960440674, −10.06268846970146, −9.828554828343956, −9.325219291716427, −8.754621101114414, −8.209329955821609, −7.579802102001380, −7.211248904970166, −6.353242294473667, −6.177653972118070, −5.190379497255566, −4.795472502321966, −3.896842050980002, −3.483546269410918, −2.868919060029919, −2.141409890635418, −1.536650176529709, −0.3764780051341747, 0.3764780051341747, 1.536650176529709, 2.141409890635418, 2.868919060029919, 3.483546269410918, 3.896842050980002, 4.795472502321966, 5.190379497255566, 6.177653972118070, 6.353242294473667, 7.211248904970166, 7.579802102001380, 8.209329955821609, 8.754621101114414, 9.325219291716427, 9.828554828343956, 10.06268846970146, 11.05658960440674, 11.18592691280236, 12.02834988766317, 12.49096926632622, 13.09353479733853, 13.37290756536225, 13.91909140261372, 14.40807293786218

Graph of the $Z$-function along the critical line