Properties

Label 2-522-1.1-c1-0-7
Degree $2$
Conductor $522$
Sign $1$
Analytic cond. $4.16819$
Root an. cond. $2.04161$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 3·5-s + 5·7-s + 8-s + 3·10-s − 6·11-s − 4·13-s + 5·14-s + 16-s − 3·17-s − 19-s + 3·20-s − 6·22-s + 4·25-s − 4·26-s + 5·28-s + 29-s − 4·31-s + 32-s − 3·34-s + 15·35-s − 37-s − 38-s + 3·40-s + 9·41-s − 7·43-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 1.34·5-s + 1.88·7-s + 0.353·8-s + 0.948·10-s − 1.80·11-s − 1.10·13-s + 1.33·14-s + 1/4·16-s − 0.727·17-s − 0.229·19-s + 0.670·20-s − 1.27·22-s + 4/5·25-s − 0.784·26-s + 0.944·28-s + 0.185·29-s − 0.718·31-s + 0.176·32-s − 0.514·34-s + 2.53·35-s − 0.164·37-s − 0.162·38-s + 0.474·40-s + 1.40·41-s − 1.06·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 522 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 522 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(522\)    =    \(2 \cdot 3^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(4.16819\)
Root analytic conductor: \(2.04161\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 522,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.783221377\)
\(L(\frac12)\) \(\approx\) \(2.783221377\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
29 \( 1 - T \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 - 5 T + p T^{2} \) 1.7.af
11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 + p T^{2} \) 1.23.a
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.73482166293076509203113078656, −10.36665832788883866939159310360, −9.109497480949641538548778552338, −7.987480521096063799248885737020, −7.30170311636574927756275463221, −5.87958673389096713663595768150, −5.13801159009478652046400048130, −4.61358895125554701935773223253, −2.54786728707166221497736882776, −1.92188031498074361434341547863, 1.92188031498074361434341547863, 2.54786728707166221497736882776, 4.61358895125554701935773223253, 5.13801159009478652046400048130, 5.87958673389096713663595768150, 7.30170311636574927756275463221, 7.987480521096063799248885737020, 9.109497480949641538548778552338, 10.36665832788883866939159310360, 10.73482166293076509203113078656

Graph of the $Z$-function along the critical line