| L(s) = 1 | + 2-s − 3-s + 4-s + 5-s − 6-s − 3·7-s + 8-s + 9-s + 10-s + 3·11-s − 12-s − 3·14-s − 15-s + 16-s + 18-s − 3·19-s + 20-s + 3·21-s + 3·22-s − 4·23-s − 24-s + 25-s − 27-s − 3·28-s − 4·29-s − 30-s − 6·31-s + ⋯ |
| L(s) = 1 | + 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s − 1.13·7-s + 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.904·11-s − 0.288·12-s − 0.801·14-s − 0.258·15-s + 1/4·16-s + 0.235·18-s − 0.688·19-s + 0.223·20-s + 0.654·21-s + 0.639·22-s − 0.834·23-s − 0.204·24-s + 1/5·25-s − 0.192·27-s − 0.566·28-s − 0.742·29-s − 0.182·30-s − 1.07·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5070 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5070 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
|---|
| bad | 2 | \( 1 - T \) | |
| 3 | \( 1 + T \) | |
| 5 | \( 1 - T \) | |
| 13 | \( 1 \) | |
| good | 7 | \( 1 + 3 T + p T^{2} \) | 1.7.d |
| 11 | \( 1 - 3 T + p T^{2} \) | 1.11.ad |
| 17 | \( 1 + p T^{2} \) | 1.17.a |
| 19 | \( 1 + 3 T + p T^{2} \) | 1.19.d |
| 23 | \( 1 + 4 T + p T^{2} \) | 1.23.e |
| 29 | \( 1 + 4 T + p T^{2} \) | 1.29.e |
| 31 | \( 1 + 6 T + p T^{2} \) | 1.31.g |
| 37 | \( 1 + 9 T + p T^{2} \) | 1.37.j |
| 41 | \( 1 - 10 T + p T^{2} \) | 1.41.ak |
| 43 | \( 1 + 10 T + p T^{2} \) | 1.43.k |
| 47 | \( 1 - 3 T + p T^{2} \) | 1.47.ad |
| 53 | \( 1 - 9 T + p T^{2} \) | 1.53.aj |
| 59 | \( 1 + 12 T + p T^{2} \) | 1.59.m |
| 61 | \( 1 + 6 T + p T^{2} \) | 1.61.g |
| 67 | \( 1 - 8 T + p T^{2} \) | 1.67.ai |
| 71 | \( 1 - 14 T + p T^{2} \) | 1.71.ao |
| 73 | \( 1 - 8 T + p T^{2} \) | 1.73.ai |
| 79 | \( 1 - 6 T + p T^{2} \) | 1.79.ag |
| 83 | \( 1 + 16 T + p T^{2} \) | 1.83.q |
| 89 | \( 1 - 3 T + p T^{2} \) | 1.89.ad |
| 97 | \( 1 + 8 T + p T^{2} \) | 1.97.i |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.59921140694375823117105646022, −6.77910536237807328242130584341, −6.39964789233099820593882315442, −5.75087516263292673750371769754, −5.06994900743718705822327598416, −3.97556377969994404659910362586, −3.60229874507158121177098214404, −2.42962564739170737700314617360, −1.50831384481974310348254310445, 0,
1.50831384481974310348254310445, 2.42962564739170737700314617360, 3.60229874507158121177098214404, 3.97556377969994404659910362586, 5.06994900743718705822327598416, 5.75087516263292673750371769754, 6.39964789233099820593882315442, 6.77910536237807328242130584341, 7.59921140694375823117105646022