Properties

Label 2-47432-1.1-c1-0-3
Degree $2$
Conductor $47432$
Sign $1$
Analytic cond. $378.746$
Root an. cond. $19.4614$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·9-s + 3·13-s − 2·17-s − 8·19-s + 4·23-s − 5·25-s + 5·27-s + 3·29-s + 2·31-s − 6·37-s − 3·39-s + 8·43-s + 12·47-s + 2·51-s − 10·53-s + 8·57-s − 9·59-s + 7·61-s − 9·67-s − 4·69-s + 14·71-s − 14·73-s + 5·75-s − 9·79-s + 81-s − 2·83-s + ⋯
L(s)  = 1  − 0.577·3-s − 2/3·9-s + 0.832·13-s − 0.485·17-s − 1.83·19-s + 0.834·23-s − 25-s + 0.962·27-s + 0.557·29-s + 0.359·31-s − 0.986·37-s − 0.480·39-s + 1.21·43-s + 1.75·47-s + 0.280·51-s − 1.37·53-s + 1.05·57-s − 1.17·59-s + 0.896·61-s − 1.09·67-s − 0.481·69-s + 1.66·71-s − 1.63·73-s + 0.577·75-s − 1.01·79-s + 1/9·81-s − 0.219·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 47432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 47432 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(47432\)    =    \(2^{3} \cdot 7^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(378.746\)
Root analytic conductor: \(19.4614\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 47432,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9543366515\)
\(L(\frac12)\) \(\approx\) \(0.9543366515\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
11 \( 1 \)
good3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 + p T^{2} \) 1.5.a
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 + 9 T + p T^{2} \) 1.67.j
71 \( 1 - 14 T + p T^{2} \) 1.71.ao
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 9 T + p T^{2} \) 1.79.j
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.51655687650268, −14.03264801100090, −13.62492155109751, −12.93151535859100, −12.54393910371661, −11.99804825974365, −11.40003515652982, −10.90677887278290, −10.66178551084331, −10.06341335531179, −9.188349856661079, −8.766299156914326, −8.420699385701311, −7.723176376229593, −6.986489788902729, −6.442809425424686, −5.963689788934877, −5.584122489678334, −4.665746963386891, −4.316045297891922, −3.556012388121465, −2.790880011620695, −2.168121009419204, −1.302565338775655, −0.3708820094512695, 0.3708820094512695, 1.302565338775655, 2.168121009419204, 2.790880011620695, 3.556012388121465, 4.316045297891922, 4.665746963386891, 5.584122489678334, 5.963689788934877, 6.442809425424686, 6.986489788902729, 7.723176376229593, 8.420699385701311, 8.766299156914326, 9.188349856661079, 10.06341335531179, 10.66178551084331, 10.90677887278290, 11.40003515652982, 11.99804825974365, 12.54393910371661, 12.93151535859100, 13.62492155109751, 14.03264801100090, 14.51655687650268

Graph of the $Z$-function along the critical line