Properties

Label 2-43706-1.1-c1-0-6
Degree $2$
Conductor $43706$
Sign $-1$
Analytic cond. $348.994$
Root an. cond. $18.6813$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 3·5-s + 6-s + 7-s − 8-s − 2·9-s + 3·10-s − 6·11-s − 12-s − 13-s − 14-s + 3·15-s + 16-s + 3·17-s + 2·18-s − 2·19-s − 3·20-s − 21-s + 6·22-s + 24-s + 4·25-s + 26-s + 5·27-s + 28-s − 6·29-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 1.34·5-s + 0.408·6-s + 0.377·7-s − 0.353·8-s − 2/3·9-s + 0.948·10-s − 1.80·11-s − 0.288·12-s − 0.277·13-s − 0.267·14-s + 0.774·15-s + 1/4·16-s + 0.727·17-s + 0.471·18-s − 0.458·19-s − 0.670·20-s − 0.218·21-s + 1.27·22-s + 0.204·24-s + 4/5·25-s + 0.196·26-s + 0.962·27-s + 0.188·28-s − 1.11·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43706 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43706 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(43706\)    =    \(2 \cdot 13 \cdot 41^{2}\)
Sign: $-1$
Analytic conductor: \(348.994\)
Root analytic conductor: \(18.6813\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 43706,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
13 \( 1 + T \)
41 \( 1 \)
good3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 + 6 T + p T^{2} \) 1.11.g
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 7 T + p T^{2} \) 1.37.h
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.94637746633941, −14.74543276798212, −13.99867412582348, −13.21103960324332, −12.67844317797090, −12.22481558933920, −11.68103063743456, −11.23309300781103, −10.85959800257571, −10.35763604300998, −9.866248595082933, −8.916199446936589, −8.558045837754044, −7.908706498954856, −7.616068232342124, −7.230350744671101, −6.322162753236313, −5.710715764479344, −5.082063579228493, −4.765685283373647, −3.675440218912180, −3.242025696322316, −2.473880799548411, −1.699782490245100, −0.5014307089860055, 0, 0.5014307089860055, 1.699782490245100, 2.473880799548411, 3.242025696322316, 3.675440218912180, 4.765685283373647, 5.082063579228493, 5.710715764479344, 6.322162753236313, 7.230350744671101, 7.616068232342124, 7.908706498954856, 8.558045837754044, 8.916199446936589, 9.866248595082933, 10.35763604300998, 10.85959800257571, 11.23309300781103, 11.68103063743456, 12.22481558933920, 12.67844317797090, 13.21103960324332, 13.99867412582348, 14.74543276798212, 14.94637746633941

Graph of the $Z$-function along the critical line