Properties

Label 2-4200-1.1-c1-0-19
Degree $2$
Conductor $4200$
Sign $1$
Analytic cond. $33.5371$
Root an. cond. $5.79112$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 7-s + 9-s + 4·11-s + 2·13-s − 2·17-s + 4·19-s − 21-s − 27-s − 2·29-s + 8·31-s − 4·33-s + 2·37-s − 2·39-s + 2·41-s − 4·43-s + 49-s + 2·51-s + 10·53-s − 4·57-s − 12·59-s + 6·61-s + 63-s − 12·67-s + 6·73-s + 4·77-s − 8·79-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.377·7-s + 1/3·9-s + 1.20·11-s + 0.554·13-s − 0.485·17-s + 0.917·19-s − 0.218·21-s − 0.192·27-s − 0.371·29-s + 1.43·31-s − 0.696·33-s + 0.328·37-s − 0.320·39-s + 0.312·41-s − 0.609·43-s + 1/7·49-s + 0.280·51-s + 1.37·53-s − 0.529·57-s − 1.56·59-s + 0.768·61-s + 0.125·63-s − 1.46·67-s + 0.702·73-s + 0.455·77-s − 0.900·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4200\)    =    \(2^{3} \cdot 3 \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(33.5371\)
Root analytic conductor: \(5.79112\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.904176821\)
\(L(\frac12)\) \(\approx\) \(1.904176821\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 - T \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.447651848867857451610060749314, −7.60567042410819730199815007251, −6.83559751008852263080440304793, −6.22412736383067126183911262131, −5.51765229233286217889543043612, −4.59673899597302331020253987034, −3.99676058459627921033697673643, −2.99780568106058195411638741515, −1.72024847621442860075788489280, −0.865039611474349503579115946096, 0.865039611474349503579115946096, 1.72024847621442860075788489280, 2.99780568106058195411638741515, 3.99676058459627921033697673643, 4.59673899597302331020253987034, 5.51765229233286217889543043612, 6.22412736383067126183911262131, 6.83559751008852263080440304793, 7.60567042410819730199815007251, 8.447651848867857451610060749314

Graph of the $Z$-function along the critical line