L(s) = 1 | − 2·3-s + (−3 − 3i)7-s + 9-s + (1 − i)11-s − 2i·13-s + (−1 − i)17-s + (3 − 3i)19-s + (6 + 6i)21-s + (−1 + i)23-s + 4·27-s + (−7 − 7i)29-s + 2i·31-s + (−2 + 2i)33-s + 6i·37-s + 4i·39-s + ⋯ |
L(s) = 1 | − 1.15·3-s + (−1.13 − 1.13i)7-s + 0.333·9-s + (0.301 − 0.301i)11-s − 0.554i·13-s + (−0.242 − 0.242i)17-s + (0.688 − 0.688i)19-s + (1.30 + 1.30i)21-s + (−0.208 + 0.208i)23-s + 0.769·27-s + (−1.29 − 1.29i)29-s + 0.359i·31-s + (−0.348 + 0.348i)33-s + 0.986i·37-s + 0.640i·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.584 - 0.811i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.584 - 0.811i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + 2T + 3T^{2} \) |
| 7 | \( 1 + (3 + 3i)T + 7iT^{2} \) |
| 11 | \( 1 + (-1 + i)T - 11iT^{2} \) |
| 13 | \( 1 + 2iT - 13T^{2} \) |
| 17 | \( 1 + (1 + i)T + 17iT^{2} \) |
| 19 | \( 1 + (-3 + 3i)T - 19iT^{2} \) |
| 23 | \( 1 + (1 - i)T - 23iT^{2} \) |
| 29 | \( 1 + (7 + 7i)T + 29iT^{2} \) |
| 31 | \( 1 - 2iT - 31T^{2} \) |
| 37 | \( 1 - 6iT - 37T^{2} \) |
| 41 | \( 1 - 4iT - 41T^{2} \) |
| 43 | \( 1 + 4iT - 43T^{2} \) |
| 47 | \( 1 + (7 - 7i)T - 47iT^{2} \) |
| 53 | \( 1 - 8T + 53T^{2} \) |
| 59 | \( 1 + (3 + 3i)T + 59iT^{2} \) |
| 61 | \( 1 + (1 - i)T - 61iT^{2} \) |
| 67 | \( 1 - 4iT - 67T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 + (3 + 3i)T + 73iT^{2} \) |
| 79 | \( 1 + 8T + 79T^{2} \) |
| 83 | \( 1 + 2T + 83T^{2} \) |
| 89 | \( 1 + 6T + 89T^{2} \) |
| 97 | \( 1 + (-11 - 11i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.101139535687888154757343634177, −7.896187354212271565040723769402, −7.07867655731667953341167169694, −6.41390294988502804524204609402, −5.74396736749512175495356481205, −4.80692827445366092158236224068, −3.81070009470153480989315449889, −2.90384284904392945037127602770, −0.992545958293620806338961011892, 0,
1.80318515915811479115274602692, 3.07283504649750636870310439265, 4.11119843435503972832553631872, 5.37856479852763345216332433780, 5.75715420349267141210556490114, 6.56719111629516412301280577319, 7.22255523085825466519027665419, 8.532386326098033075536076699371, 9.238942270210354711088330763436