L(s) = 1 | − 2·3-s + (−3 − 3i)7-s + 9-s + (1 − i)11-s − 2i·13-s + (−1 − i)17-s + (3 − 3i)19-s + (6 + 6i)21-s + (−1 + i)23-s + 4·27-s + (−7 − 7i)29-s + 2i·31-s + (−2 + 2i)33-s + 6i·37-s + 4i·39-s + ⋯ |
L(s) = 1 | − 1.15·3-s + (−1.13 − 1.13i)7-s + 0.333·9-s + (0.301 − 0.301i)11-s − 0.554i·13-s + (−0.242 − 0.242i)17-s + (0.688 − 0.688i)19-s + (1.30 + 1.30i)21-s + (−0.208 + 0.208i)23-s + 0.769·27-s + (−1.29 − 1.29i)29-s + 0.359i·31-s + (−0.348 + 0.348i)33-s + 0.986i·37-s + 0.640i·39-s + ⋯ |
Λ(s)=(=(1600s/2ΓC(s)L(s)(−0.584−0.811i)Λ(2−s)
Λ(s)=(=(1600s/2ΓC(s+1/2)L(s)(−0.584−0.811i)Λ(1−s)
Degree: |
2 |
Conductor: |
1600
= 26⋅52
|
Sign: |
−0.584−0.811i
|
Analytic conductor: |
12.7760 |
Root analytic conductor: |
3.57436 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1600(207,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 1600, ( :1/2), −0.584−0.811i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+2T+3T2 |
| 7 | 1+(3+3i)T+7iT2 |
| 11 | 1+(−1+i)T−11iT2 |
| 13 | 1+2iT−13T2 |
| 17 | 1+(1+i)T+17iT2 |
| 19 | 1+(−3+3i)T−19iT2 |
| 23 | 1+(1−i)T−23iT2 |
| 29 | 1+(7+7i)T+29iT2 |
| 31 | 1−2iT−31T2 |
| 37 | 1−6iT−37T2 |
| 41 | 1−4iT−41T2 |
| 43 | 1+4iT−43T2 |
| 47 | 1+(7−7i)T−47iT2 |
| 53 | 1−8T+53T2 |
| 59 | 1+(3+3i)T+59iT2 |
| 61 | 1+(1−i)T−61iT2 |
| 67 | 1−4iT−67T2 |
| 71 | 1+71T2 |
| 73 | 1+(3+3i)T+73iT2 |
| 79 | 1+8T+79T2 |
| 83 | 1+2T+83T2 |
| 89 | 1+6T+89T2 |
| 97 | 1+(−11−11i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.101139535687888154757343634177, −7.896187354212271565040723769402, −7.07867655731667953341167169694, −6.41390294988502804524204609402, −5.74396736749512175495356481205, −4.80692827445366092158236224068, −3.81070009470153480989315449889, −2.90384284904392945037127602770, −0.992545958293620806338961011892, 0,
1.80318515915811479115274602692, 3.07283504649750636870310439265, 4.11119843435503972832553631872, 5.37856479852763345216332433780, 5.75715420349267141210556490114, 6.56719111629516412301280577319, 7.22255523085825466519027665419, 8.532386326098033075536076699371, 9.238942270210354711088330763436